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a b s t r a c t

Lattice models can be a basic tool for alloy design, due to their ability to capture the most important ther-
modynamic and kinetic phenomena of a wide-range of alloys at a low computational cost. However, in
order to correctly treat ordered precipitates at off-stoichiometric compositions requires multi-body
potentials, and these can be challenging to calibrate to known alloy behaviors. Here we introduce a sim-
ple means of capturing the multi-body terms needed to treat ordered compounds in a lattice model based
on defining ‘‘compound units”. This approach is particularly designed for, and easily calibrated in, cases
where the structure and formation energy of equilibrium compounds are already known. This is accom-
plished by defining a compound unit that derives its energy from the formation energy of the compound
as an a priori input. The method is illustrated for a binary alloy with D03 and B2 stable compounds.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Lattice models provide a convenient framework for studying
the evolution and stability of alloy microstructures [1–15]. These
models typically focus on the mesoscale behavior of the system,
describing the state of the alloy on a fixed lattice, with an inter-
atomic potential that expresses the relative preference for different
arrangements of species on the lattice. A pairwise potential is often
used because of its simplicity for implementation and easy adapt-
ability for conducting rapid surveys across many material systems
[1–4,16–20]. The pairwise potential for a binary alloy can generally
be written as:

H ¼
X

fi;jg
JðkÞð1� drirj

Þ ð1Þ

The summation is conducted over all pairs of lattice sites, where
ri = 1 for a solvent atom and �1 for a solute atom located at lattice
site i, and d is a Kronecker delta, which is 1 for like bonds (solvent–
solvent (AA) and solute–solute (BB)) and 0 for solute–solvent

bonds (AB). JðkÞ is the pairwise interaction parameter describing
the difference in pairwise bond energy, E, between like and unlike

pairs at a neighbor distance of k: JðkÞ ¼ EðkÞ
AB �

ðEðkÞAAþEðkÞBB Þ
2 . By varying JðkÞ

many different alloy systems can be represented using this general
description.

When considering only nearest neighbor interactions (k = 1), a
shortcoming of the pairwise potential for modeling negative
enthalpy of mixing alloys becomes apparent. For a positive
enthalpy of mixing alloy (J(1) > 0), the internal energy can be mini-
mized by forming separate solute and solvent phases, and thus at
0 K the thermodynamic equilibrium state consists of two phases
that are immiscible in one another. In a negative enthalpy of mixing
alloy (J(1) < 0), thermodynamically it is expected that an ordered
compound will be formed to minimize internal energy such that
at 0 K the equilibrium state again consists of two phases that satisfy
the zero entropy requirement of the third law of thermodynamics.
The pairwise model does not produce this result for negative
enthalpy of mixing alloys, instead predicting a disordered alloy
state (solid solution) to be thermodynamically stable. Moreover,
this limitation is inherent to the pairwise potential, and thus exists
regardless of whether the equilibrium state is determined via the
cluster variation method [7–9] or a Monte Carlo simulation [1,6].

This anomalous behavior can be attributed to the insufficient
description of ordering using a pairwise potential, which is illus-
trated in Fig. 1 for the case of a two-dimensional square lattice.
In this schematic, one system contains an ordered compound,
while the second system is disordered. According to Eq. (1), both
of these systems have the same internal energy since each solute
is bonded to only solvent atoms in both situations, which is also
the lowest energy state possible for the system. Because the second
system is disordered, it has higher entropy and is therefore found
to be stable at all finite temperatures.
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The repercussions of this shortcoming are not limited to the 0 K
equilibrium. In a pairwise model, ordering only occurs when the
solute concentration is large enough to impose a geometrical con-
straint, e.g. when a disordered phase requires forming solute–so-
lute bonds at an energetic cost. For example, the nearest
neighbor model exhibits an equiatomic compound in the 2D
square lattice because at this stoichiometry the only way to attain
all solute–solvent bonds is to form an ordered phase. While the
above discussion mainly focuses on the nearest neighbor model
to simplify the explanation, this behavior is expected to be present
at absolute zero for any pairwise model with negative interaction
parameters [1,7–9]. The inability to capture accurate ordering ten-
dencies limits the usefulness of such a description for designing
alloys, where it is often desirable to study the precipitation of an
ordered compound at off-stoichiometric compositions, and in sys-
tems where ordering has additional energetic implications beyond
merely the geometric ones.

The standard route to better incorporate an alloy’s ordering ten-
dency is to include the interactions of multiple atoms, and thus
allow ordered states to access a lower internal energy [21–25]. A
general formulation for introducing the multi-body terms can be
written as:

H ¼
X

singlet

Jiri þ
X

pairs

Jijrirj þ
X

triplets

Jijkrirjrk . . . ð2Þ

where the J terms are now called effective cluster interactions. A
typical procedure for predicting the bulk phase diagrams of differ-
ent alloy systems is to calculate compound formation energies
using density functional theory, and then using these to infer rea-
sonable effective cluster interactions (called the Structure Inversion
Method or Connolly–Williams method [21]). Generally, this
requires consideration of 30–50 possible ordered compounds in
order to determine a set of 10–100 interaction parameters that
are deemed the most important for the interaction potential.

This method of including multi-body terms has been useful for
developing bulk phase diagrams of alloys [26–29]. Increasingly,
however, lattice models are being extended outside of classical
bulk thermodynamic behavior, for instance to study the effects of
interfaces [16–18,31–35]. In such cases, while using a cluster
expansion to define the interatomic potential may still be feasible,
it is not optimal because (i) the stability of compounds in bulk sys-
tems is already known [30], and thus ‘‘predicting” the stable com-
pounds through simulation is unnecessary and (ii) the multi-body
terms are calculated for each alloy system and thus too specific to
probe a large number of alloy combinations and often not easily
extendable to non-bulk environments. In some of our group’s work
on nanostructured alloys we have found a need for a lattice-based

method that can be rapidly calibrated to known bulk thermody-
namics and then used to explore, e.g., driven processing through
ballistic mixing [34] or deposition [35], or simply to explore the
space of accessible structures in nanostructured systems [18,36–
38]. It is our purpose in this paper to present such a method that
overcomes the limitations of the pairwise model in describing neg-
ative enthalpy of mixing systems, specifically for cases where the
structure and formation energy of equilibrium compounds are
already known, and a full cluster expansion would be redundant.

2. Compound unit model

In order to permit stable compounds in a pairwise model, a dis-
tinction has to be drawn between solute–solvent bonds in a solid
solution and those in an ordered phase. Rather than add multiple
higher order terms as in Eq. (2), we directly include an ordered
compound with known structure and formation energy into a
nearest-neighbor pairwise formalism by identifying its structure
through a ‘‘compound unit”. A compound unit is defined here as
a repeating group of atoms from which the entire superstructure
of the compound can be formed. For example, we may define the
compound unit shown in Fig. 2a to identify the compound shown
in Fig. 1. Many potential compound units may be defined – the
selection of appropriate compound units is discussed in Section 2.1,
but the key feature of the unit is that when it appears in the struc-
ture, it will be assigned a lower enthalpy than what the pairwise

Fig. 1. The schematic shows two solute arrangements, ordered (on left) and disordered (on right). The internal energies calculated by Eq. (1) in the nearest neighbor
approximation are equivalent in both cases, making ordered phases unstable at off-stoichiometric concentrations (Nsolute is the number of solutes and z is the coordination
number).

(a) 

(b) 

Fig. 2. (a) Shows a possible definition of a compound unit for the ordered
compound pictured in Fig. 1, where dark atoms are solute. (b) Shows a schematic of
how the energy of an atom is calculated in the compound unit model, where darker
atoms have a larger compound unit contribution to their energy.
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