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a b s t r a c t

Several global optimization methods are reviewed that attempt to ensure that the integral Gibbs energy
of a closed isothermal isobaric system is a global minimum to satisfy the necessary and sufficient condi-
tions for thermodynamic equilibrium. In particular, the integral Gibbs energy function of a multi-
component system containing non-ideal phases may be highly non-linear and non-convex, which makes
finding a global minimum a challenge. Consequently, a poor numerical approach may lead one to the
false belief of equilibrium. Furthermore, confirming that one reaches a global minimum and that this
is achieved with satisfactory computational performance becomes increasingly more challenging in sys-
tems containing many chemical elements and a correspondingly large number of species and phases.
Several numerical methods that have been used for this specific purpose are reviewed with a benchmark
study of three of the more promising methods using five case studies of varying complexity. A modifica-
tion of the conventional Branch and Bound method is presented that is well suited to a wide array of ther-
modynamic applications, including complex phases with many constituents and sublattices, and ionic
phases that must adhere to charge neutrality constraints. Also, a novel method is presented that effi-
ciently solves the system of linear equations that exploits the unique structure of the Hessian matrix,
which reduces the calculation from a O(N3) operation to a O(N) operation. This combined approach
demonstrates efficiency, reliability and capabilities that are favorable for integration of thermodynamic
computations into multi-physics codes with inherent performance considerations.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Computational thermodynamics plays an integral role in facili-
tating engineering design of a wide array of materials and pro-
cesses. Many equilibrium solvers have been developed to assist
in this process, which rely on numerical methods and algorithms
to compute thermodynamic equilibria. Upon initial impression,
the number of publications in the open literature pertaining to this
subject matter appears rather exhaustive. However, the majority of
articles describing global optimization methods applied to compu-
tational thermodynamics deal with relatively small systems, such

as liquid–vapor equilibria, or are aimed at solving only a handful
of calculations [1–7]. Although these methods work well for rela-
tively small systems or when only a few calculations are needed,
they were not developed to handle very large systems or for inte-
gration of thermodynamic calculations into multi-physics codes,
which puts much greater demands on reliability and efficiency.
This has been the impetus of developing THERMOCHIMICA [8] for inte-
gration into multi-physics codes, such as the BISON [9] nuclear fuel
performance code. The goal of this paper is to review some of the
more promising algorithms with greater mathematical rigor and
to focus on performance issues that become more prominent as
the size and complexity of thermodynamic systems increases.

The computation of thermodynamic equilibria rests on the min-
imization of the integral Gibbs energy of a closed isothermal–
isobaric system subject to linear equality and inequality
constraints represented by conservation of mass and the Gibbs
phase rule. The Gibbs energy function of non-ideal phases may
be non-convex, yielding multiple local minima. Local minima cor-
respond to different compositions of phases that may be believed
to be stable (e.g., a miscibility gap), which may not necessarily
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correspond to the true equilibrium composition. Finding the global
minimum of this function among the many local minima within
the domain space can be a daunting challenge, especially in large
complex thermodynamic systems containing many highly non-
ideal solution phases. Consequently, an inadequate numerical
approach may lead one to the false belief of thermodynamic equi-
librium, which may be far from the true equilibrium state.

There are several significant issues with finding a global mini-
mum of the integral Gibbs energy function. First, no global opti-
mization technique guarantees the ability of finding a global
extremum of a nonconvex function [10]. One can, however, gain a
certain level of confidence in applying a particular algorithm to a
specific type of problem within a well defined perimeter of appli-
cation. Second, searching for a global minimum becomes increas-
ingly more difficult as the size of the system increases. And
finally, the computational effort associated with performing this
task can increase very rapidly in large systems, which can be a sig-
nificant obstacle to integrating thermodynamic computations into
multi-physics codes. The necessary and sufficient conditions for
thermodynamic equilibrium at constant temperature and pressure
are reviewed in Section 2 and several global optimization tech-
niques that have been applied to the thermodynamic equilibrium
problem are reviewed in Section 3. Three particular methods that
have been found effective in computational thermodynamics are
further examined in five case studies of varying complexity in Sec-
tion 4. Finally, the behavior and suitability of these methods are
discussed in Section 5.

2. Necessary and sufficient conditions for thermodynamic
equilibrium at constant temperature and pressure

The necessary conditions for thermodynamic equilibrium
require satisfaction of mass conservation and Gibbs’ phase rule.
The sufficient condition for equilibrium in a closed system at con-
stant temperature and pressure corresponds to a global minimum
of the integral Gibbs energy function. Ensuring that the mass bal-
ance constraints and the Gibbs phase rule have been satisfied is
straightforward; however, special attention must be given to con-
firming that the Gibbs energy of a system, G, is at a global mini-
mum.1 For sake of completeness, the necessary conditions are
briefly reviewed while the manuscript as a whole is dedicated to
the sufficient condition of equilibrium.

First, the mass balance constraints must be satisfied. The total
mass of system component j is represented by bj and is computed
by

bj ¼
XK
k¼1

nk

XNk

i¼1

xiðkÞaiðkÞ;j þ
XX
x¼1

nxax;j ð1Þ

where Nk denotes the number of species in solution phase k, and K
and X represent the total number of stable solution phases and
pure condensed phases in the system. The mole fraction of species
i in solution phase k is represented by xiðkÞ, and nk and nx represent
the total number of moles of solution phase k and pure condensed
phase x, respectively. The stoichiometry coefficients of component
j in species i and pure condensed phase x are aiðkÞ;j and ax;j (g-
at�mol�1), accordingly. Clearly, nk and nx must be non-negative
and 0 < xiðkÞ < 1.

A solution phase may be represented as a multi-sublattice
model, whereby the species are represented by a fixed combina-
tion of constituents that contain only a single constituent on each

sublattice. Thus, constituents are a subset of the species. Further-
more, the species may then be interpreted as stoichiometric com-
pounds representing the extremes of composition and are
commonly referred to as ‘‘compound end members”. The mole
fraction of species i, or compound end member, is related to the
site fractions of constituents, yiðsÞ, on all sublattices in the phase
corresponding to i through the following formalism

xiðkÞ ¼
YNs

s¼1

yiðsÞ ð2Þ

where s is the sublattice index and Ns is the number of sublattices.
Second, the equilibrium condition must also abide Gibbs’ phase

rule, which requires that the number of thermodynamic degrees of
freedom, F, be non-negative. For a closed isothermal–isobaric sys-
tem, F is defined as the difference between the number of system
components, C, and the total number of stable phases, U (i.e.,
U ¼ KþX) as

F ¼ C �U ð3Þ
where maintaining constant temperature and pressure removes
two degrees of freedom. Thus, Gibbs’ phase rule requires that the
number of co-existing phases at equilibrium in an isothermal iso-
baric closed systemmust be less than or equal to the number of sys-
tem components (i.e., 1 6 U 6 C). A system component is the most
basic form of representing part of a thermodynamic system, which
is often taken as a chemical element or by a fixed integer combina-
tion of chemical elements. The term ‘‘system component” is used
here to distinguish from a ‘‘phase component”, which typically rep-
resents a species in a solution phase.

Finally, the sufficient condition for equilibrium requires that G
is at a global minimum with respect to the quantities of all species
and phases. The integral Gibbs energy of a multicomponent multi-
phase system can be represented as

G ¼
XK
k¼1

nkgk þ
XX
x¼1

nxgx ð4Þ

where gk and gx are the molar Gibbs energies of solution phase k
and pure condensed phase x, respectively. The latter is fixed,
whereas the formulation of gk is model dependent and is a non-
linear function of xiðkÞ. This term is responsible for the non-
convexity of G.

A local minima2 in G, which may differ from the global minimum,
is indicated by dG ¼ 0. An equivalent statement yields the following
linear equality3 [14,15]

li ¼
XC
j¼1

ai;jCj ð5Þ

where li is the chemical potential of species i and Cj is the chemical
potential of system component j. Eq. (5) states that the chemical
potential for each system component must have the same value
in all stable phases within the system [15]. This equation is often
graphically represented as a tangent line between phases on a
molar Gibbs energy plot in a binary system or equivalently as a
hyperplane in higher order systems. This is sometimes called the
‘‘Gibbs plane”, whereby the corners of the Gibbs plane are given
by Cj and any point on this plane is li.

The linear equality represented by Eq. (5) is used to justify the
selection of stable phases and ensuring that no metastable phase

1 Of course, thermodynamic equilibrium can be calculated for other conditions,
such as fixed enthalpy or chemical potential of a component. The conditions
described herein exclusively pertain to a closed system at constant temperature and
pressure.

2 Numerical methods that locally minimize G subject to mass balance constraints
have been extensively documented in the literature [8,11–13] and are not discussed
herein.

3 A thorough derivation and discussion of this necessary condition is provided by
Piro et al. [14].
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