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a b s t r a c t

In order to increase the time step and ensure the stability of the numerical solution, the error balancing
method (EBM) is presented to solve the phase-field model with finite interface dissipation. An error is
introduced to the phase-field to balance the error introduced to its gradient term in discretization. For
solving this model, the EBM in the explicit scheme improves numerical stability and simulation efficiency
with the same accuracy as the traditional scheme. Both theory and realistic tests demonstrate that the
EBM keeps the solute conservation effectively. An intermediate variable that denotes concentration is
introduced in order to ensure the phase concentration equations have the same form within both the
interface and the bulk. Then, the EBM is extended to the implicit scheme. Two cases presented in this
paper demonstrate that the EBM in the explicit scheme can enhance efficiency by 120 times compared
with the traditional scheme; the EBM in the implicit scheme can enhance efficiency by 5 times compared
with it in the explicit scheme.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

For the past few decades, the phase-field approach has played a
useful role in various evolution processes of materials, including
nucleation, precipitation, crystal growth, deformation, elasticity,
fracture [1–9]. Recently, the phase-field model with finite interface
dissipation [10,11] has been developed in the framework of the
multiphase-field (MPF) formalism [12,13]. Each phase concentra-
tion is assigned by a kinetic equation to account for interface dis-
sipation, rendering it novel. This differs from simply applying an
extra condition for solute partition among the phases as in the tra-
ditional models: the condition of a given partition or the condition
of equal diffusion potentials. Thus, the extra calculation for solute
partition in the interface can be avoided in numerical simulations.
There are two features for the phase-field model with finite inter-
face dissipation: (i) various kinetic processes from the chemical
equilibrium to strong non-equilibrium phase transformations can
be nicely described, and (ii) the CALPHAD (CALculation of PHAse
Diagram) thermodynamic database can be incorporated directly
into the phase-field simulation [14].

Convergence, stability, accuracy, and efficiency should be con-
sidered comprehensively for numerical simulations to make them
reach an acceptable balance. For solving this model, the stability
condition is more rigorous than the convergence condition (for
details, please see Section 2). Practical numerical calculation

demonstrates that the time step ensuring stability is much less
than the time step ensuring convergence. In order to guarantee
both convergence and numerical stability, we must set sufficiently
small time step and space step, which greatly influences simula-
tion efficiency. The time consumption of numerical simulations
mainly depends on the number of main loops. The smaller the time
step is, the more the main loops are and the lower the efficiency
becomes; the reverse applies as well. Therefore, increasing the
time step is crucial for improving efficiency in numerical
simulations.

In order to increase the time step and reduce the number of
main loops, the error balancing method (EBM) is presented to solve
this model, which replaces /aðG0Þ (G0 is a grid point in the inter-
face) with an weighted average of /a in the phase concentration
equations to discretize the gradient term. This method balances
the errors in discretization, increases the time step ensuring stabil-
ity, as well as decreases the numbers of main loops. This results in
a notable improvement in simulation efficiency. Two cases simu-
lated by this model are employed to test the EBM. The solidifica-
tion of Al–Cu alloy is used to test the EBM in the explicit
scheme; the coarsening and ripening process in Si-0.135As is used
to test the EBM in the implicit scheme. The simulation results show
that the EBM greatly improved simulation efficiency when solving
this model. This paper focuses on improving simulation efficiency
under the premise of ensuring numerical stability; it establishes
an important foundation for the wide application of this model
in various phase transition processes.
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2. Error balancing method (EBM)

For a binary system with dual phases, the evolution equations
of the phase-filed model with finite interface dissipation can be
written as:
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are the kinetic coefficient, the driving
force, and the diffusion potential (different from the chemical
potential), respectively; rab; gab , Da, and Pab are the interface
energy (surface density), the interface width, the diffusivity, and
the permeability (i.e. the dissipation coefficient), respectively.

The advantage of this model is that arbitrary phase concentra-
tion can be obtained by solving evolution equations rather than
solving Fick’s diffusion equation and partition condition in the pre-
vious research [15]. From the phase concentration equations, it is
known that r/a tends to 0 when /a tends to 0, theoretically. If
we set sufficiently small space step and time step, the numerical
solution of Eqs. (1a)–(1c) behaves well, but this greatly increases
the amount of calculations. If the grid points in the interface are
not sufficient, the simulation results will lose stability because /a

at a grid point near phase b in the interface is too small. Thus, when
the traditional scheme is used to solve this model, it is very diffi-
cult to make numerical stability and simulation efficiency reach
an expected balance.

In order to overcome the difficulties above, we present the EBM
to discretize the phase concentration equations, i.e., we replace
/aðG0ÞwithMnþ1ð/aðG0Þ; . . . ;/aðGnÞÞ, which is an weighted average
of /a. The EBM will balance the errors of /aðG0Þ and
r � ð/aDarcaÞðG0Þ, due to discretization.

The grid points that are used to discretize the gradient term will
also be used to calculate the weighted average Mnþ1. Let
Dx ¼ Dy ¼ Dz ¼ h. For 1-D case:
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For 2-D case, if we apply five-point scheme to discretize the gradi-
ent term:
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If we apply 9-point scheme to discretize the gradient term:
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For 3-D case, if we apply 7-point scheme to discretize the gradient
term:
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If we apply 19-point scheme to discretize the gradient term:
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Next, we will investigate why the EBM increases the time step.

Considering that /ð~xÞ is 2-order differentiable with respect to spa-
cial variable ~x;/ð~xÞ is convex along any direction when /ð~xÞ ! 0.
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