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a b s t r a c t

This paper proposes a real-space phase field model solved by finite element method for giant magne-
tostrictive materials. The model is based on the thermodynamic theory of ferromagnetic materials and
employs the time-dependent Ginzburg-Laudau (TDGL) equation to predict the domain evolution process.
We have derived the corresponding finite element formulation which takes the mechanical displacement,
the magnetic potential, and the magnetization vector as the field variables, according to variational prin-
ciple. A multi-field coupling finite element has been developed through the ABAQUS user element sub-
routine module to simulate the coupling between mechanical and magnetic characteristics for
microstructures with arbitrary geometries and boundary conditions. The simulation results of a general
magnetic nanoring coincide well with the reports in literature, which confirms the validity of the phase
field method developed. The magnetization processes have also been investigated for nanorings with dif-
ferent geometries. The results suggest that the vortex chirality and multi-stable magnetization states can
be controlled by changing both the symmetry of loading situation and the geometrical configuration. The
phase field model solved by finite element method is expected to be a useful tool for the design of high
density magnetic random access memories.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Magnetic microstructures have attracted considerable interests
since they are widely used in recording media, magnetic random
access memories (MRAMs), magnetic actuators and sensors [1,2].
For the magnetic nanoring geometry, a flux closure vortex mag-
netic state with no demagnetizing field can be formed over a wide
range of applied field, making it the ideal storage unit for MRAMs.
Both experimental research and numerical simulation have been
conducted for magnetic nanorings [3–5]. Due to the complex
domain evolution process, numerical simulation has become an
important and efficient tool for the investigation of ferromagnetic
materials [6]. In the 1960s, Brown laid the basis of micromagnetics
based on variational principle [7]. In traditional micromagnetics,
the magnetization vector is employed as the field variable and
has a constant magnitude when the temperature is fixed. The
stable magnetization state is determined by the combined action
of different energies including the magnetocrystalline anisotropy
energy, exchange energy, magnetostatic energy and external field
energy. By solving the Landau-Lifshitz-Gilbert (LLG) equation, we

can acquire the temporal evolution of magnetization on micro-
scale. Both the finite element method (FEM) and the finite differ-
ence method (FDM) have been employed to solve the nonlinear
equation [8,9]. In order to increase the accuracy and efficiency of
demagnetizing field calculation, some advanced numerical tech-
niques have been employed, including the FDM with fast Fourier
transform (FFT) method or Tensor grid (TG) method, and FEM with
shell transformation or boundary element method (BEM) [10–12].
The micromagnetic simulation has been frequently applied in the
prediction of magnetic properties for microstructures [13,14], the
optimization and investigation of various magnetic devices
[15–17].

For general ferromagnetic materials, the magnetostrictive
strains are usually neglected in micromagnetic simulation. How-
ever, inhomogeneous magnetostriction induced strain and external
strain, such as the mismatch strain of thin film and substrate [18],
should be considered for the accuracy simulation and design of
high density memory. In order to study the effect of stress on mag-
netic properties, the magnetoelastic energy term was introduced
into the total Gibbs free energy in micromagnetic simulation
[19,20]. However, this method can only be used for the case that
the material is subjected to a uniaxial homogeneous stress,
and cannot simulate the effect of magnetization on mechanical
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properties. By combining the micromagnetic model with the
phase-field microelasticity theory [21], a phase field model for
giant magnetostrictive materials was proposed [22]. The phase
field model employs the magnetization vector as the order param-
eter and the LLG equation to simulate the dynamic magnetization
behavior. The strain and magnetization under magnetic field and
mechanical stress can be studied simultaneously. More phase field
models for ferromagnetic materials and multiferroic composites
can be found in literature [23–25]. However, the periodic boundary
conditions need to be satisfied in most phase field models, thus the
structure with irregular geometries or under complex load condi-
tions cannot be simulated. Miehe presented a geometrically con-
sistent rate-type incremental variational formulation for phase
field models, where the geometric property of the magnetization
director is exactly preserved pointwise by nonlinear rotational
updates at the nodes [26]. Wang developed a real-space phase field
model to study the domain evolution of ferromagnetic materials
without considering free space [27].

In this paper, based on the phase field equations for
micro-magneto-elastic model, a novel finite element formulation
is established according to the variational principle. The TDGL
equation is employed to simulate the temporal evolution of
magnetization and the magnitude of magnetization is controlled
by an additional constraint energy term in the total free energy.
The magnetic potential is extended into the free space to calculate
the magnetostatic energy. Through the ABAQUS user subroutine
module, a multi-field coupling finite element for magnetostrictive
materials has been developed, taking the mechanical displacement,
magnetic potential and magnetization vector as the field variables.
With the phase field model developed, we have investigated the
geometrical regulation of magnetic properties for nanorings. It is
shown that the vortex chirality and multi-stable magnetization
states can be controlled by breaking the symmetry of loading
condition and changing the geometrical configuration of nanorings
reasonally.

2. Phase field model

According to the theory of micromagnetics, the total magnetic
field can be decomposed into two parts, namely the applied mag-
netic field and the demagnetizing field, which can be written as

h ¼ he þ hd; ð1Þ
where he represents the applied magnetic field and hd the demag-
netizing field. The demagnetizing field is related to the magnetic
potential as

hdi ¼ �/;i: ð2Þ
The magnetic field exists not only in the magnetic material body,
but also in the free space. Since the demagnetizing field decays
quickly in the air, a free space box containing the magnetic body

is employed in the model, as shown in Fig. 1. In the surface of the
free space, the magnetic potential is assumed to satisfy the Dirchlet
condition

/ ¼ 0 on @X: ð3Þ
According to the Maxwell’s equations, the magnetic induction

vector b satisfies the condition

Bi;i ¼ 0 in X: ð4Þ
The constitutive relationship between the magnetic induction

vector, the magnetic field and the magnetization vector can be
interpreted as follows

B ¼ l0ðhd þ he þ m̂smÞ in X; ð5Þ
where l0 is the magnetic permeability of the vacuum and m the
unit magnetization vector. m̂s is the magnitude of the magnetiza-
tion vector, the value of which can be written as

m̂sðxÞ ¼
ms for x 2 V ;

0 for x 2 X=V ;

�
ð6Þ

where ms is the magnitude of saturation magnetization of the mag-
netic material. The equation implies that the magnetization only
exists inside the magnetic materials. Assuming that the applied
magnetic field is constant in space, Eq. (4) can be rewritten as

hdi;i ¼ �m̂smi;i in X: ð7Þ
The boundary conditions on the surface of magnetic body is given
as

/þ ¼ /� on @V ; ð8Þ

@/þ

@n
� @/�

@n
¼ �msm � n on @V ; ð9Þ

where the superscript + represents the value on the external surface
and � on the internal surface. Eq. (8) suggests the magnetic poten-
tial is continuous across the surface of magnetic material. Eq. (9)
requires that the magnetic flux coming into the interface is equal
to that flowing out of the interface.

In order to predict the magnetic behavior of ferromagnetic
materials, equations governing the evolution of magnetization
vectors are still needed. In this model, the time dependent
Ginzburg-Landau (TDGL) equation is employed to simulate the
temporal evolution of magnetic domains:

g
@mðx; tÞ

@t
¼ � dE

dmðx; tÞ ; ð10Þ

where g is the inverse mobility coefficient and E the total free
energy density. Although the Landau-Lifshitz-Gilbert (LLG) is often
used to describe magnetization evolution, it has been tested that
when the applied magnetic field is of low frequency, as in the case
simulated here, the TDGL equation gives the same simulation
results with that obtained by the LLG equation [28]. In addition,
the TDGL equation is much simpler in the numerical implementa-
tion than the LLG equation and has also been employed for the evo-
lution of magnetic domains [29] and electric domains [30].

Since the surface anisotropy can be neglected in this model, the
magnetization vector satisfies the following conditions on the sur-
face of magnetic materials according to the theory of
micromagnetics:

@m
@n

¼ 0 on @V : ð11Þ

According to the classical domain theory for ferromagnetic
materials, the domain structures below Curie point are decided by
the competition of free energies including the magnetocrystalline
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Fig. 1. The free space box including the magnetic body and the air.
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