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a b s t r a c t

The system of crystal structure has a major effect on the physical and chemical properties of Li-ion sili-
cate cathodes. Hence, the prediction of crystal system has a vital importance to estimate many other
properties of cathodes for applications in batteries. Three major crystal systems (monoclinic, orthorhom-
bic and triclinic) of silicate-based cathodes with Li–Si–(Mn, Fe, Co)–O compositions were predicted using
wide range of classification algorithms in machine learning. The calculations are based on the results of
density functional theory calculations from Materials Project. The strong correlation between the crystal
system and other physical properties of the cathodes was confirmed based on the feature evaluation in
the statistical models. In addition, the parameters of various classification methods were optimized to
obtain the best accuracy of prediction. Ensemble methods including random forests and extremely ran-
domized trees provided the highest accuracy of prediction among other classification methods in the
Monte Carlo cross validation tests.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

The advancements in numerical methods to calculate electronic
structure of materials besides the rapid improvements in the com-
putational power have provided the opportunity of computing
physical and chemical properties of a wide range of novel and com-
plex materials [1–3]. Consequently, researchers have access to
enormous amount of information about the estimated properties
of materials. As an example, Materials Project [4–6] offers an open
web-based access to the calculated physical and chemical proper-
ties of known and predicted materials derived from density func-
tional theory (DFT) calculations of electronic structure. DFT
calculations are powerful methods for the estimation of electron
density and band structure of materials. The progression in devel-
opment of exchange–correlation potential has led to many precise
computations of physical properties for many diverse types of
materials including Li-ion batteries [7–10]. Subsequently, the huge
amount of information about materials should be analyzed to
achieve an improved understanding of materials properties. Gener-
ally, the complex correlations between different physical proper-
ties are hard to discover using traditional statistical models.
However, advanced machine learning (ML) methods have the
potential to discover the complex correlation between crystal

structure and different physical and chemical properties. ML has
been used for solving many complex classification and regression
problems in numerous scientific felids such as prediction of phys-
ical properties [11], corrosion rate [12], lattice parameter [13],
crystal structure [14,15], 3D reconstruction of cells in microscopy
[16], and many applications for Li-ion batteries [17–20].

Cathode materials with Li–Si–(Mn, Fe, Co)–O compositions are
in great interest for research due to their applications in Li-ion bat-
teries. For example, compounds with orthosilicate structure (Li2-
XSiO4, X = Mn, Fe, Co) are one of the major candidates as suitable
cathodes for Li-ion batteries because of their low production cost
and providing high capacity and safety [21,22]. Crystal structure
of cathodes have a significant effect on the properties of Li-ion bat-
teries [23]. Therefore, investigation and development of suitable
computational and experimental methods for the characterization
of cathodes are fundamental for the better understanding of their
physical and chemical properties.

In this research, various classification algorithms are investi-
gated to predict the three major types of crystal system (CS) (mon-
oclinic, orthorhombic and triclinic) of cathode materials with Li–
Si–(Mn, Fe, Co)–O compositions using the data from Materials Pro-
jects. The majority of DFT results for predicted or known cathodes
are available for these three classes. The ML methods to build the
models are linear, quadratic and shrinkage discriminant analysis,
neural networks, support vector machines, k-nearest neighbors,
random forests and extremely randomized trees. The performance
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of classification methods are evaluated based on Monte Carlo cross
validation tests on the dataset.

It should be emphasized that the features (properties) are
dependent on the crystal structure as the main input for DFT calcu-
lations. Hence, the correlation between the predicted values for
features and CS is anticipated. However, the main goal of the pre-
sented approach is to answer these questions: (1) is it possible to
predict the CS having other materials properties? (2) what features
are more important for this prediction? The answer to the first
question is positive; although, the prediction can be achieved using
proper statistical learning methods as described in this paper. The
presented approach in this study can be useful for other research-
ers to consider the correlations between features in the results
derived from high performance calculations. In fact, this type of
investigation can lead to a better insight regarding the relationship
between various features of materials.

2. The dataset

The dataset contains the results of DFT calculations for 339
cathode materials with Li–Si–(Mn, Fe, Co)–O compositions using
the data from Materials Project. In Materials Project [4–6], the
DFT calculations and optimizations are performed using VASP soft-
ware [24]. The exchange–correlation potentials for DFT calcula-
tions in Materials Project are generalized gradient approximation
(GGA) or GGA + U [4]. Materials Project is based on a high-
throughput process. Many of the crystal structures for DFT calcula-
tions in Materials Project are from inorganic crystal structural
database (ICSD) containing positions of atoms and lattice parame-
ters of crystals [6]. The optimization of atomic positions are also
performed on available or generated structures. The initial DFT cal-
culations can be based on available data from ICSD, previous calcu-
lations, modified structure by chemical substitution and
contributions from user community of the project [4]. More infor-
mation about the details of calculations can be found in the paper
by Jain et al. [4].

The dataset contains the chemical formula, space group, forma-
tion energy (Ef), energy above hull (EH), band gap (Eg), number of
sites (Ns), density (q), volume of unit cell (V) and CS of each cath-
ode. The aforementioned properties in the dataset can be defined
according to the glossary of Materials Project as follows. Ns and q
are the number of atoms in the unit cell of crystal and the density
of bulk crystalline materials, respectively. To build ML models only
variable V is used given that V ¼ M=q (M is the atomic mass). Also,
EH is defined as the energy of decomposition of material into the
most stable ones [6]. It should be noticed, the calculation of forma-
tion energy and other properties are at the temperature of 0 K and
ambient pressure. Eg and V can be dependent on temperature and
pressure of system; however, for our calculations the temperature
and pressure are considered constant. Table 1 shows the data for
some selected silicate cathodes from the dataset. The dataset con-

tains a wide range of complex structures and various chemical
compositions.

Fig. 1 shows the pair plots of the properties of silicate cathodes
in the dataset. The diagonal plots are the histogram plots for the
distribution of each feature of cathodes. As it can be seen, generally
there is no evident correlation between the features and the CSs.
This complexity makes the classification problem hard to be solved
by conventional methods. It should be mentioned the results of
calculations in the Materials Project are prone to change because
of performing new optimizations or using novel potentials.

3. Methods of classification for machine learning

Classification is a method in ML to split the dataset into certain
classes. Since the CSs (monoclinic, orthorhombic and triclinic) are
specified, the ML is called a supervised learning. Also, the accuracy
of classification is defined as the portion of correct prediction of
classes. The feature matrix, X, with n �m dimensions and the
response matrix, Y, as a one dimensional matrix with length n
and K different classes are used for the supervised classification.
Here n is the number of observations (samples) and m is the num-
ber of features. For this study n, m and K are 339, 5 and 3, respec-
tively. CS can be defined as a function depending on other variables
as: CS ¼ f ðV ; Eg ;Ns; Ef ; EHÞ. In fact, based on five variables of V, Eg, Ns,
Ef and EH the class of CS can be estimated using ML methods. In this
section, the applied classification methods on the dataset to build
the models are concisely introduced. The mathematical details of
applied methods can be found in the cited papers.

3.1. Linear, quadratic and shrinkage discriminant analysis

Linear discriminant analysis (LDA) is based on the estimation of
the distribution of predictors (X) in the response classes, i.e.
f kðXÞ � PrðX ¼ xjY ¼ kÞ where f kðXÞ is the density function of X
for the class k [25]. Afterward, using Bayes’ theorem the probabil-
ities of occurring the response in each class (PrðY ¼ kjX ¼ xÞ) are
calculated. So LDA based on Bayes’ theorem can be formulated as
[25]:

PrðY ¼ kjX ¼ xÞ ¼ pkf kðxÞ
XK
l¼1

plf lðxÞ
,

ð1Þ

where pk is the prior probability of class k. LDA uses normal distri-
bution for estimation of f k and assumes the covariance matrix is the
same for each class [26]. In contrast to LDA, quadratic discriminant
analysis (QDA) presumes each class can have different covariance
matrix leading to possibly a better classification accuracy [26].

Shrinkage discriminant analysis (SDA) is based on LDA or diag-
onal discriminant analysis (DDA) [27]. DDA is an special case of
LDA when covariance matrix is diagonal [28]. In fact, LDA and
DDA act as the ranking predictors and SDA uses feature selection
for the enhancement of accuracy of classification [27,28]. The sda

Table 1
Data for some selected silicate cathodes from the dataset.

Formula Space group Ef (eV) EH (eV) Eg (eV) Ns q (g/cm3) V (Å3) CS

Li2MnSiO4 Pc �2.699 0.006 3.462 16 2.993 178.513 Monoclinic
Li2Mn2(SiO3)3 P21/c �2.769 0.077 3.188 64 2.517 929.064 Monoclinic
Li2Co2(SiO3)3 P21/c �2.598 0.069 2.727 64 2.739 872.856 Monoclinic
Li2FeSi3O8 P21 �2.84 0.069 3.081 28 2.665 351.384 Monoclinic
LiMn(SiO3)2 Pbca �2.824 0.036 0.037 80 3.343 850.626 Orthorhombic
LiFeSiO4 Pn21a �2.604 0.018 2.961 28 2.89 355.979 Orthorhombic
Li2Co2Si2O7 C2cm �2.453 0.072 2.84 26 3.579 278.304 Orthorhombic
Li7Mn11(Si3O16)2 P1 �2.439 0.092 0.361 56 3.909 566.407 Triclinic
LiFeSi3O8 P1 �2.896 0.032 3.342 26 2.76 330.953 Triclinic
LiCo3(SiO4)2 P1 �2.25 0.076 0.005 42 3.318 552.402 Triclinic
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