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Many benchmarks of density-functional theory with respect to experiment suggest the error on predicted
equilibrium volumes to scale with the volume. Relative volume errors are therefore often used as a deci-
sive argument to select one exchange-correlation functional over another. We show that the error on the
volume (after correcting for systematic deviations) is only approximately relative. A simple analytic

model, validated by rigorous Monte Carlo simulations, reveals that a more accurate error estimate can
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be derived from the inverse of the bulk modulus. This insight is not only instrumental for the selection
or design of suitable functionals. It also calls for a new attitude towards computational errors: to report
computational errors on electronic-structure calculations, identify systematic deviations and distinguish
between relative and absolute effects.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Over the last few decades, powerful computers and advanced
computational approaches have revolutionized materials science.
Whereas first-principles methods were originally limited to a pos-
teriori analyses of experimentally studied compounds, they now
make it possible to investigate materials prior to experiment and
at significantly lower costs. As a result, computational materials
design has become a research discipline in its own right. However,
a compromise between accuracy and available resources is inevita-
ble. Applied methods vary from very approximate yet cheap (e.g.
classical force fields [1,2]) to nearly exact yet terribly expensive
(e.g. full configuration interaction [3]). A popular middle ground
is density-functional theory (DFT) [4,5], which produces qualita-
tively acceptable predictions at a reasonable cost for many sys-
tems, provided a good choice is made for the so-called
exchange-correlation functional. Nevertheless, the obtained
results are still approximate, and the accuracy of the DFT calcula-
tions is determined by the selected functional. Understanding the
expected deviations between DFT and experimental values is
therefore essential to assess the reliability of a prediction and
choose an appropriate functional correspondingly.

Several benchmark studies in the literature seek to evaluate the
differences between DFT predictions and experimental results.
Although these kind of studies are mainly limited to molecular sys-
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tems [7-11], a number of exhaustive solid-state tests are available
as well [11-16]. However, conclusions drawn in these works may
be significantly affected by the choice of the error model [17]. This
is nicely illustrated by the equilibrium volume, or equivalently the
lattice parameter. Most benchmarks list both absolute (mean error,
mean absolute error) and relative differences with respect to
experiment (mean relative error, mean absolute relative error)
[12-15], while other articles express the community intuition that
errors should scale in a relative way (i.e. smaller errors on smaller
volumes) and only mention the latter [11,16]. The volume of beryl-
lium (7.8 A3/atom experimentally), for example, is thus expected
to be predicted more accurately with DFT than that of sodium
(37.2 A3Jatom) or barium (62.3 A3jatom) [6]. In addition to these
relatively simple approaches, some authors also assessed DFT
errors more rigorously. Some of the present authors [6,18], for
example, applied a linear regression between experimental and
DFT results to distinguish between systematic and residual devia-
tions. In the current article, a systematic error denotes the pre-
dictable over- or underestimation of DFT compared to
experiment, which can be corrected for by means of a regression
analysis. The remaining unpredictable (yet deterministic) fluctua-
tion is denoted as residual error. In Refs. [6,18], we did not observe
the residual errors on the volume to behave in a purely absolute or
relative way (see Fig. 1(a)). Pernot et al. [19] applied a more general
Bayesian Model Selection to determine the most appropriate poly-
nomial degree to describe the systematic bias between predictions
with several functionals and experiment. They also found a linear
relationship to be most suitable, and expressed the remaining
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Fig. 1. Absolute values of the difference between DFT predictions and thermally
corrected experimental values for (a) the equilibrium volume, plotted as a function
of the DFT volume and (b) the cohesive energy, plotted as a function of the DFT
cohesive energy [6]. Three example materials are highlighted in red. All DFT
quantities were corrected for systematic deviations from experiment by means of a
linear regression, following the procedure described by Lejaeghere et al. [6]. For the
volume no obvious absolute (dot-dashed line) or relative behaviour (dashed line) is
observed, while the cohesive energy is characterized by an absolute error bar (dot-
dashed line). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

discrepancies in terms of method inadequacy and parametric
uncertainty of the fit, using a virtual measurement framework
[20]. In this way, they found the prediction uncertainty on lattice
parameters to increase as a function of the lattice parameter itself.
Finally, Mortensen et al. [21] extracted error estimates per element
by varying the generalized-gradient approximation (GGA) func-
tional itself according to a Gaussian distribution. This distribution
was tuned to a least-squares fit of DFT-GGA cohesive energies to
experimental results. Although the resulting error bars were found
to scale nicely with the deviation from experiment, the study did
not provide a definite answer on the nature of the volume error
either.

It therefore remains unclear whether the error on Vg, should be
an absolute or a relative one. The error on the volume is indeed lar-
ger for Ba than for Be, for example, but not larger than for Na (Fig. 1
(a)). Nevertheless, insight in the error is critical for the comparison,
ranking and construction of high-accuracy functionals. The present
study aims to answer that question, based on the properties of a

solid-state equation of state. After formulating our primary ansatz,
we will approach the problem from both an analytic and a numer-
ical (Monte Carlo) point of view. In each case, we will assume that
systematic deviations (such as the 4% volume overestimation [6]
by the PBE functional) have been corrected for, allowing for a bet-
ter stochastic description of the remaining errors.

2. Ansatz

Before dealing with the equilibrium volume, we first focus on
the energy. Indeed, besides electron densities or wave functions,
the basic quantities in first-principles methods are cohesive ener-
gies or, more precisely, cohesive energy differences. They are used
to evaluate the relative stability of two configurations, such as in
formation energies. In addition, many other properties are derived
from energy differences. Think of elastic moduli, for example,
which represent second derivatives of the total energy with respect
to deformation. Since the equilibrium volume relates to the abso-
lute minimum of the potential energy surface, this quantity too
depends on energy differences.

The primary ansatz of this study is that after correcting for sys-
tematic deviations, the error bar on cohesive energy (differences) per
atom is absolute, i.e. not proportional to the cohesive energy (differ-
ence) itself. Indeed, a relative error is unlikely, as small cohesive
energy (differences) may arise from the cancellation of large ener-
getic contributions, thus not necessarily giving rise to smaller
errors. The assumption of an absolute error bar is also consistent
with observed distributions of cohesive energies (see Fig. 1(b))
and formation energies [22,23]. When assessing a large and diverse
set of materials, the errors may then be considered to assume a
Gaussian distribution, and only the elimination of systematic devi-
ations makes it possible to treat all materials on equal footing. Note
that each type of cohesive energy difference is characterized by its
own error bar. The energy difference between two almost identical
structures will always be small, and hence the error will be too.
This is the case for two slightly different volumes of the same
material, for example. We account for this dependency of the error
on the volume, as will be discussed later.

If the fundamental error is an error on energy differences, the
errors on derived quantities, such as the volume, must depend
on it. Whether the error on the volume should be absolute or rel-
ative hence follows from the absolute character of the energy error.
The easiest way to determine the relation between the volume
error and the energy error, is by looking at the inverse problem:
rather than starting from a certain energy error and investigating
what volume changes yield equations of state (EOS) within that
error bar, it is more straightforward to directly evaluate the energy
change associated with a change in equilibrium volume. We first
treat this problem in an analytic yet approximate way, ascertaining
the most important trends. Afterwards, we apply a more rigorous
numerical method based on a Monte Carlo procedure.

3. Analytic approximation

To analytically assess the relation between errors on the energy
and on the EOS parameters (such as the equilibrium volume), we
examine how the shape of the EOS influences the energy difference
between two fixed volumes, E(aVy) — E(V;) = AE(ar), with Vg a vol-
ume close to the equilibrium volume and o close to 1 (see'
coloured vertical lines near the E axis in Fig. 2(a)). We use the
Birch-Murnaghan EOS with zero reference energy:

! For interpretation of color in Fig. 2, the reader is referred to the web version of
this article.
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