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a b s t r a c t

A method to construct a two-body potential model for ionic materials with a Fourier series basis is
examined. In this method, the coefficients of cosine basis functions are uniquely determined by solving
simultaneous linear equations to minimize the sum of weighted mean square errors in energy, force and
stress, where first-principles calculation results are used as the reference data. As a validation test of the
method, potential models for magnesium oxide are constructed. The mean square errors appropriately
converge with respect to the truncation of the cosine series. This result mathematically indicates that
the constructed potential model is sufficiently close to the one that is achieved with the non-truncated
Fourier series and demonstrates that this potential virtually provides minimum error from the reference
data within the two-body representation. The constructed potential models work appropriately in both
molecular statics and dynamics simulations, especially if a two-step correction to revise errors expected
in the reference data is performed, and the models clearly outperform two existing Buckingham potential
models that were tested. The good agreement over a broad range of energies and forces with
first-principles calculations should enable the prediction of materials behavior away from equilibrium
conditions, such as a system under irradiation.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Force-field methods such as classical molecular statics (MS) and
molecular dynamics (MD) methods are important computational
techniques in condensed matter physics. Since the interatomic
interactions are approximately described by simplified equations,
the so-called potential model, the computational cost for energy
and force evaluations is largely reduced compared with first-
principles calculations. Due to this approximation, however, the
accuracy of simulation results is affected by the quality of the
potential model. Hence, developing a potential model that appro-
priately describes a phenomenon of interest is a key step to obtain
realistic results by a force-field method.

Constructing a potential model is generally composed of four
steps, after determining a phenomenon and a system to be studied.

(1) Gather reference data toward which a potential model is
optimized.

(2) Choose an interaction model frame: two-body representa-
tion, three-body representation, etc.

(3) Define a function formula of the potential model: Lennard-
Jones, Morse, Buckingham, etc., in the two-body representa-
tion, for example.

(4) Determine a method to optimize the parameters in the
model function, and then apply it.

At each step, some errors are incorporated into the potential
model. Regarding step (1) for a solid material, early studies refer-
enced experimental data on crystallographic, thermal, mechanical
and vibrational properties of the target system. Since the number
of model parameters must be sufficiently smaller than the number
of reference data, a simple model function was required. This
means that steps (2) and (3) were restricted by step (1). This situ-
ation was changed by the advancement of first-principles calcula-
tion. Nowadays, one can evaluate energies and forces of a system of
interest with a high accuracy. Thus, a great number of reference
data can be prepared to employ a complex model formula.

In the past few decades, several sophisticated model functions
were suggested, such as the Tersoff [1] and Brenner [2] potentials
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for covalent materials, variable charge models [3,4] for ionic
materials, and embedded-atom model (EAM) [5] and its modified
version (MEAM) [6] for metallic materials. In addition, more com-
plex potential models composed by multiple model functions, like
the REAX-FF model [7] have been becoming popular to cover var-
ious chemical forms of substances at once. These sophisticated
models were derived considering the physics and the chemistry
of interatomic interactions.

Even for such sophisticated model functions, however, their
numerical accuracy is still limited because available function space
is restricted by prepared function formulas, namely errors in step
(3). Hence, as another approach, mathematics-oriented method-
ologies using a more flexible representation of potential energy
have been attracting increasing attention [8], such as potential
energy fitting with interpolated moving least-squares methods
(IMLS) [9,10], Gaussian approximation potentials (GAP) [11] based
on Gaussian process regression [12], a method based on a linear
regression using the least absolute shrinkage and selection opera-
tor (LASSO) [13], and generalized neural network representation
[14]. These methods can construct a potential model which yields
energies and forces close to first-principles calculations, such as a
GAP model for tungsten [15]. However, the computational cost is
largely increased [16].

For some applications that require long-time and/or large-
system simulations, including simulation of irradiation damage
processes in nuclear materials, a potential model that realizes rea-
sonable accuracy with a low computational cost is practically vital.
Regarding the computational cost, the two-body representation
has the best advantage. Although the two-body representation is
apparently insufficient for covalent and metallic systems, it is
expected to provide reasonable accuracy for ionic materials, as
many two-body potential models have been successfully devel-
oped. However, most two-body potential models for ionic materi-
als are still composed by simple empirical functions such as the
Buckingham and the Morse potential models, which can only use
a small part of the function space available for the two-body
representation. If the function space is fully utilized, the quality
of two-body potential models may be largely improved.

In the present study, therefore, we examine a mathematics-
oriented method to construct two-body potential models for ionic
materials with a quasi-complete basis functions. For this purpose, a
Fourier series is employed as the basis functions, instead of empir-
ical model functions. The coefficients of the basis functions are
uniquely and straightforwardly determined by solving linear
simultaneous equations to minimize the sum of weighted mean
square errors in energy, force and stress, where first-principles cal-
culation results are used as the reference data. Since the Fourier
series is reasonably regarded as a complete orthogonal system in
the function space that two-body potential models belong to, if
the fitting error from the reference data is appropriately converged
with respect to the truncation of the Fourier series, this method
provides a potential model adequately close to the one that has
the minimum model error within the two-body representation.
In short, the method constructs a virtually best two-body potential
model. We may also expect that this method will uncover the lim-
itation of two-body potential models without being interrupted by
uncertainties caused by steps (3) and (4).

The remaining part of the paper is organized as follows. In Sec-
tion 2, the potential model formula and its parameterization
method is explained. In Section 3, first-principles calculation
results that were not utilized in the parameterization step are used
as the reference data to test validity of the methodology, and the
convergence behaviors of the sum of weighted mean square errors
in energy, force and stress are shownwith respect to the truncation
of both the number of reference data and the Fourier series.
Magnesium oxide (MgO), which is one of the simplest metal oxides

and has a high ionicity, is selected as the test system. In Section 4,
the quality of the potential model in MS and MD simulations is
examined, including mechanical property, melting point, thermal
expansion behavior, radial distribution functions and defect
energies. In addition, we propose a two-step correction method
for constructed potential models in order to revise errors, which
are caused by the first-principles calculation, in the reference data.
In Section 5, comparisons on the model quality with existing Buck-
ingham potential models are briefly provided. Finally, the paper is
closed with concluding remarks in Section 6.

2. Methodology

2.1. Potential model formula

We consider a periodic function between �rcut and +rcut, where
rcut represents the cutoff distance of the short-range two-body
interaction and is set to 10 Å in the present study. 10 Å is a typical
cutoff distance in two-body potential models of ionic materials.
Since the functional shape between �rcut and 0 does not need to
have physical meanings, we arbitrarily define this periodic func-
tion as an even function so that its first derivative becomes 0 at rcut.
It is reasonable to assume that a realistic two-body model function
is smooth in the range of possible interatomic distances in con-
densed matter, e.g. from around 1 Å to rcut. Thus, we can expect
that the non-truncated cosine series can compose a two-body
potential model that holds the minimum error from the reference
data, namely the best model within the two-body representation.
With these considerations, the potential energy (Epot) in an ionic
system is described as follows:

Epot ¼
XEwald
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where rij is an interatomic distance between two ions (i and j), qi
and qj are their ionic charges, NA the number of atoms in a unit sim-
ulation cell, N is the number of cosine functions to be utilized for
the cosine series representation, and aelement_i-element_j,k is the coef-
ficient of k-th cosine function for combination of the elements of
i-th and j-th ions (3 kinds of combinations: Mg–Mg, Mg–O and
O–O). In the right-hand side of Eq. (1), the first term denotes the
Coulomb interaction, which is evaluated using the Ewald summa-
tion method without truncation. In the present study, we simply
set qMg = +2e and qO = �2e, which are typical values for MgO. The
second term is of the short-range interaction term composed by a
cosine series, where the first summation is taken over the number
of atoms in the unit cell (NA), the second summation is taken over
all atoms that are located within the cutoff distance (rcut) from
i-th ion, including atoms in neighboring image cells, and the third
summation is taken over the number of cosine basis functions
(N). The multiplication by 1/2 is required to cancel the double
counting of atomic combinations. The third term in Eq. (1) is the ref-
erence energy, which is needed to appropriately compare energies
calculated by a potential model and energies determined by DFT
calculation, because absolute energies given by pseudopotential
DFT calculation have no clear physical meaning. Eref is written as
the sum of reference energies of atoms involved in a unit simulation
cell, where nMg and nO are, respectively, the numbers of Mg and O
atoms involved in the unit simulation cell, and eMg and eO are,
respectively, the reference energies of the Mg and O atoms. eMg

and eO are independent of atomic configurations.
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