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a b s t r a c t

The goal of this paper is to present a brief review and a critical comparison of the performance of several
numerical schemes for solving the Allen–Cahn equation representing a model for antiphase domain
coarsening in a binary mixture. Explicit, fully implicit, Crank–Nicolson, and unconditionally gradient
stable schemes are considered. In this paper, we show the solvability conditions of the numerical
schemes and the decreasing property of total energy using eigenvalues of the Hessian matrix of the
energy functional. We also present the pointwise boundedness of the numerical solution for the Allen–
Cahn equation. To compare the accuracy and numerical efficiency of these methods, numerical experi-
ments such as traveling wave and motion by mean curvature are performed. Numerical results show that
Crank–Nicolson and nonlinearly stabilized splitting schemes are almost close to the analytic solution.
However, if a large time step is used in the numerical test, we have only two results with linearly and
nonlinearly stabilized splitting schemes in spite of having large gaps between analytic solution and
numerical results. The other numerical schemes except for linearly and nonlinearly stabilized splitting
schemes have unstable results when large time step is used.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we shall present a brief review and a critical
comparison of the performance of several numerical schemes for
solving the Allen–Cahn (AC) equation [1]:

@/ðx; tÞ
@t

¼ � F 0ð/ðx; tÞÞ
�2

þ D/ðx; tÞ; x 2 X; 0 < t 6 T; ð1Þ

where X � Rd ðd ¼ 1;2;3Þ is a domain. /ðx; tÞ is the difference
between the concentrations of the two mixtures’ components and

Fð/Þ ¼ 0:25ð/2 � 1Þ2. The parameter � is the gradient energy coeffi-
cient related to the interfacial energy. The boundary condition is

n � r/ ¼ 0 on @X; ð2Þ
where n denotes the normal vector on @X. The AC equation is the
L2-gradient flow of the following total free energy functional:
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Differentiating the energy Eð/Þ with respect to t gives

d
dt

Eð/Þ ¼
Z
X

F 0ð/Þ
�2

/t þr/ � r/t

� �
dx

¼
Z
X

F 0ð/Þ
�2

� D/
� �

/t dx ¼ �
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where the integration by parts and the boundary condition (2) are
used. Therefore, the total energy is non-increasing in time. The AC
Eq. (1) was originally introduced as a mathematical model for anti-
phase domain coarsening in a binary alloy [1]. The equilibrium con-
figuration of the Ginzburg–Landau free energy functional has been
applied to a wide range of problems such as phase transitions [2],
coupled with the Navier–Stokes equation [3,4], energy minimizers
[5], a gradient flow of a lower semicontinuous convex function
[6], the motion by mean curvature flows [7], image analysis
[8–12], crystal growth [13], anisotropic equations [14,15],
vector-valued Allen–Cahn equation [12,16,17], precipitation and
dissolution [18], pattern dynamics of reaction–diffusion equations
[19,20], and degenerate diffusion [21]. Error estimates and stability
were also studied in [22,23]. In addition, high accuracy solution for
the AC equation is discussed in [24,25] and the conservative AC
equation is also studied [26,27].
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This paper is organized as follows. In Section 2, we describe
numerical analysis such as solvability, the total energy decrease,
and the boundedness of the numerical solution. We present the
numerical results in Section 3. In Section 4, we conclude.

2. Numerical analysis

We present various numerical schemes for the AC equation. For
simplicity, we discretize the AC equation in one-dimensional space
X ¼ ða; bÞ. Higher dimensional discretizations are similarly defined.
Let N be a positive even integer, h ¼ ðb� aÞ=N be the uniformmesh
size, and Xh ¼ fxi ¼ ði� 0:5Þh;1 6 i 6 Ng be the set of cell-centers.
Let /n

i be approximations of /ðxi;nDtÞ, where Dt ¼ T=Nt is the time
step, T is the final time, Nt is the total number of time steps, and
/n ¼ ð/n

1;/
n
2; . . . ;/

n
NÞ. Let a discrete differentiation operator be

rh/
n
iþ1

2
¼ ð/n

iþ1 � /n
i Þ=h, then the zero Neumann boundary

condition (2) is defined as

rh/
n
1
2
¼ rh/

n
Nþ1

2
¼ 0: ð5Þ

We then define a discrete Laplacian by Dh/i ¼ rh/iþ1
2
�rh/i�1

2

� �.
h

and discrete l2-inner products by

h/;wih ¼ h
XN
i¼1

/iwi and ðrh/;rhwÞh ¼ h
XN
i¼0

rh/iþ1
2
rhwiþ1

2
:

Note that a discrete summation by parts holds with the
boundary condition (5), i.e., hDh/;wih ¼ h/;Dhwih ¼ �ðrh/;rhwÞh.
We also define the discrete norms as k/k2h ¼ h/;/ih and
k/k1 ¼ max16i6N j/ij. We consider the following six numerical
schemes for Eq. (1) and compare their accuracy and performance
by using numerical experiments:
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Nonlinear splitting
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Linear splitting
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where i ¼ 1; . . . ;N.

2.1. Solvability of the schemes

Let us consider the following discrete AC equation:

/nþ1
i � /n

i

Dt
¼ �að/nþ1

i Þ3 � ð1� aÞð/n
i Þ3 þ b/nþ1

i þ ð1� bÞ/n
i

�2

þ Dhðc/nþ1
i þ ð1� cÞ/n

i Þ; ð11Þ

where a; b, and c are real numbers. Note that

Explicit a ¼ b ¼ c ¼ 0; ð12Þ
Implicit a ¼ b ¼ c ¼ 1; ð13Þ

Crank—Nicolson a ¼ b ¼ c ¼ 1
2
; ð14Þ

Nonlinear splitting a ¼ 1; b ¼ 0; c ¼ 1; ð15Þ

Linear splitting a ¼ 0; b ¼ �2; c ¼ 1: ð16Þ
Here, the explicit scheme is uniquely solvable in Eq. (11). There-

fore, we focus on the solvability of the other four schemes.
Bearing in mind that we want to have Eq. (11) as the Euler

equation of a functional, we consider the following functional
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n;rh/Þh: ð17Þ

Here, we define the notation by /w ¼ ð/1w1;/2w2; . . . ;/NwNÞ. Let /�

and w – 0 be fixed vectors and s be a real number variable. We con-
sider a quartic polynomial H in s by

HðsÞ ¼ Gð/� þ swÞ

¼ Gð/�Þ þ s
/� � /n
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And the second derivative is derived as

H00ðsÞ ¼ 1
Dt

� b

�2

� �
hw;wih þ

3a
�2

hð/� þ swÞ2;w2ih þ ckrhwk2h: ð19Þ

If the parameters satisfy aP 0; b < �2=Dt, and c P 0, then
H00ðsÞ has a strictly positive value. It means that the polynomial H
is strictly convex and Gð/Þ is bounded below. Thus, there is the
unique minimizer /�, i.e., Gð/�Þ 6 Gð/Þ for all /. Since /� is the crit-
ical point, we have,

H0ð0Þ ¼ /� � /n

Dt
þ að/�Þ3

�2
þ ð1� aÞð/nÞ3

�2
� b/�

�2
� ð1� bÞ/n

�2

*

�cDh/
� � ð1� cÞDh/

n;w

+
h

¼ 0: ð20Þ

Since Eq. (19) holds regardless of w, we have

/� � /n

Dt
¼ �að/�Þ3 � ð1� aÞð/nÞ3 þ b/� þ ð1� bÞ/n

�2

þ Dhðc/� þ ð1� cÞ/nÞ: ð21Þ
Next, we want to show that the minimizer is unique. Let us

assume /̂ is another minimizer, i.e., Gð/̂Þ ¼ Gð/�Þ and
w ¼ /̂� /� – 0. By using the strict convexity of H, we have

Gð/� þ 0:5wÞ ¼ Hð0:5Þ < Hð0Þ þ Hð1Þ
2

¼ Gð/�Þ þ Gð/̂Þ
2

¼ Gð/�Þ;

which leads to a contradiction that /� is the minimizer.
For linearly and nonlinearly stabilized splitting schemes,

H00ðsÞ > 0 is satisfied with any time step size. Crank–Nicolson and
implicit schemes holds if Dt < 2�2 and Dt < �2, respectively. From
now on, we define the unique minimizer as /nþ1 and it satisfies
Eq. (21).

132 D. Jeong et al. / Computational Materials Science 111 (2016) 131–136



Download	English	Version:

https://daneshyari.com/en/article/7959150

Download	Persian	Version:

https://daneshyari.com/article/7959150

Daneshyari.com

https://daneshyari.com/en/article/7959150
https://daneshyari.com/article/7959150
https://daneshyari.com/

