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a b s t r a c t

A tight-binding variable-charge model aimed at performing large-scale realistic simulations of bulk,
surfaces and interfaces of aluminum oxides have been developed. This model is based on the charge
equilibration (QEq) method and explicitly takes into account the mixed iono–covalent character of the
metal–oxygen bond by means of a tight-binding analytical approach in the second-moment approxima-
tion of the electronic structure. The parameters of the model were optimized to reproduce structural and
energetic properties of the a-Al2O3 corundum structure at room temperature and pressure. The model
exhibits a good transferability between five alumina polymorphs: corundum, Rh2O3(II)-type, perovskite
(Pbnm), CaIrO3-type and U2S3-type structures. In this paper, we present results obtained by molecular
dynamics for pressure ranging from 0 to 500 GPa. First, static relaxations reproduce satisfactorily exper-
imental and ab initio results concerning the stability domains and transitions from corundum to Rh2O3(II)
and then to CaIrO3-type structure when pressure increases. At higher pressure, the transition from CaIrO3

to U2S3 structure is also observed at a pressure significantly lower than that given ab initio. Molecular
dynamics confirm these results and also predict a phase transition at about 400 GPa from corundum
to a triclinic structure.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Alumina has important applications in high-pressure science,
geophysics and ceramic science. Single-crystal Al2O3 (sapphire) is
often used in shock wave experiments as a high-pressure optical
window or as a high-pressure electrical insulator. When doped
with Cr3+ (ruby) it is used as pressure calibrant in diamond-
anvil-cell experiments. Alumina is also an important mineral com-
ponent in earth’s mantle. Phase transitions in alumina under pres-
sure have been extensively studied by experimental and
theoretical approaches [1–8]. All these studies agree to predict first
a phase transition from corundum to Rh2O3(II)-type structure
around 80 GPa and then to CaIrO3-type post-perovskite phase after
130 GPa [2]. Moreover, a transition at 370 GPa is theoretically pre-
dicted from CaIrO3 to U2S3-type structure [3].

Ab initio approaches can predict the stability range for the dif-
ferent structures as a function of the applied pressure but the study
of the kinetics of transitions is more difficult due to the small size
of the systems which can be handled. On the other hand, molecular
dynamics based on empirical potentials allows such studies with a

reasonable accuracy leading to a better understanding of the
mechanisms at the atomic scale. Ten years ago, Jahn et al. [9] used
an anisotropic-ion model (AIM) developed previously [10,11] to
perform dynamic simulations of pressure-driven phase transfor-
mations in Al2O3. The parameters of the AIM model were obtained
from ab initio calculations performed on different crystal structures
and the liquid state, ensuring the transferability of the potential.
This fitting procedure is rather accurate but is extremely cumber-
some and very computer time consuming. In this paper, we pro-
pose to study the high-pressure behavior of alumina at the
atomic scale by using a recent semi-empirical variable-charge
model based on a tight-binding approach in the second-moment
approximation. The so-called SMTB-Q model (Second-Moment
Tight-Binding-QEq) aimed at described iono–covalent compounds
(bulk, surface, defects) [12–15] depends on a limited number of
parameters adjusted on the physical properties of only one phase,
here a-Al2O3 at ordinary temperature and pressure. The properties
of the other phases are obtained without additional fitting. More-
over, the second-moment framework supplies an analytical
expression for both ionic charges and covalent energy of the com-
pound, which ensures fast calculations.

This article is organized as follows. A first part is dedicated to
the description of the SMTB-Q model and to the optimization of
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its intrinsic parameters as well as to the properties of bulk a-Al2O3

and their (0001) and (1�102) surfaces. In a second part, the
results obtained in static conditions for the different structures,
from 0 to 500 GPa are presented, following by those obtained by
molecular dynamics. The last part is devoted to our conclusions.

2. Computational methods

2.1. The SMTB-Q model

The variable-charge scheme of the SMTB-Q model is based on
the QEq formalism proposed by Rappé and Goddard [16] and
allows the ionic charges to vary according to their local environ-
ment. Let us note that several variable-charge models based on this
formalism have been previously developed for oxides, among
which those of Ogata et al. [17] and Streitz and Mintmire [18].
On the other hand, the SMTB-Q model exploits the quantum
description of insulating oxides proposed by Goniakovski and
Noguera [19,20]. Thus, the cohesive energy, Ecoh, of a simple binary
oxide MnOm is the sum of four terms: ionic, coulombic, covalent
and repulsive:

Ecoh ¼ Eion þ Ecoul þ Ecov þ Erep; ð1Þ
with:
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Eion (Eq. (2)) is the ionization energy developed up to the second
order with respect to the charges QA on atom A, E0

A is the energy of

the neutral atom and v0
A and J0AA are the electronegativity and the

hardness of the atom A respectively. Ecoul (Eq. (3)) is the electro-
static energy with JAB the coulomb interaction between the charges
on centers A and B. Following Rappé and Goddard [16], JAB are
coulomb integrals between two single s-type Slater orbitals
qAðrÞ ¼ Nnrn�1e�ð2nþ1Þ=4RA , where Nn is the normalization constant,
n is the quantum number of outer valence orbital and RA is the
covalent radius of atom A in the original QEq formulation [16]. In
a solid, the real significance of RA is more complex because it
depends both on the coordination number of the atom and on
the interatomic distance which forces us to consider it as an adjus-
table parameter. At short distance, the coulomb interaction is
shielded, leading to a decrease on the absolute value of the electro-
static energy compared with the one obtained with point-charge
models [21]. The covalent energy, Ecov (Eq. (4)), is derived from
the quantum model developed by Noguera and Goniakovski
[19,20] and is detailed in a recent article [13]. The covalent interac-
tion is extending over all neighbors of every atom (M or O) up to
the second-moment cut-off radius rc located between the 4th
and 5th neighbors [22]. r0OM is the equilibrium first-neighbor

O–M distance, bi (the hopping integral) and q are adjustable
parameters. bi is different if atom i is a metal or an oxygen given
the relationship b2

OZO ¼ b2
MZM derived in Appendix A in [13], where

ZO and ZM are the coordination number of oxygen and metal
respectively. DQi is the part of covalent interaction which depends

on the charge delocalization dqi ¼ QF
i

��� ���� Qij j (QF
i and Qi are the for-

mal and the real charge of atom i respectively) by the relation:

DQi ¼ dQiðni
cov � dQiÞ; ð6Þ

where ni
cov is the number of orbitals of an ion hybridazed with the

orbitals of its neighboring ions of opposite nature. Let dM and dO the
numbers (or degeneracies) of outer orbitals of the metal and oxygen
in an oxide MnOm. The number of hybridized orbitals is then:

n0 ¼ minðndM;mdOÞ: ð7Þ
Thus each oxygen shared nO

cov ¼ n0=m orbitals with their metal-
lic neighbors and each metal shared nM

cov ¼ n0=n orbitals with their
oxygen neighbors.

Eq. (5) represents the short-range pair repulsion between ions.
AM, pM, B and q are adjustable parameters. Cation–cation short-
range interactions are neglected because the M outer orbitals are
empty in an insulator.

The equilibrium distribution of charges is obtained according to
the equalization of either the electronegativities (vi) or the elec-
tronic chemical potentials (ECP) (li), these two quantities being
of opposite sign (vi = �li). In this work, the equilibrium charges
are calculated by using the dynamical fluctuating charge model
[23] that equalizes the ECP of each ion with the average ECP in
the oxide:

8i li ¼
@Etot

@ne
i

¼ l; ð8Þ

where ne
i is the number of electrons on an ion i. li may be separated

into an electrostatic part and a covalent part:

li ¼ lES
i þ lcov

i : ð9Þ
From Eqs. (8) and (9), we obtain the charge delocalization on an

oxygen:
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In a homogeneous MnOm bulk, lcov
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M and it follows that:
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Comparing this expression with that obtained by Noguera et al.
[19,20] in the framework of the second-moment approximation of
the tight-binding scheme:

dQi ¼ ni
cov 1� eM � eOffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eM � eOð Þ2 þ 4Zib
2
i

q
0
B@

1
CA; ð12Þ

where eM and eO are the energy of the atomic orbitals of metal and
oxygen respectively. It follows that lES

M and lES
O are equivalent to eM

and eO respectively.
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