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a b s t r a c t

It is well-known that the Wulff construction represents the steady-state shape during a shrink evolution
in the anisotropic Allen–Cahn phase-field model (AC-PFM). Adding a constant driving force (DFmc) into
the AC-PFMwill result in the competition between the anisotropic shrink and the isotropic growth, which
may lead to different phase shape at the steady state. Through numerical simulations and theoretical
analyses, three types of evolution behaviors that depend on the strength of DFmc have been concluded:
shrink resembling Wulff, growth resembling Wulff and growth deviating from Wulff. In other words,
in the limit of DFmc ! 0, the steady-state shape predicted by PFM follows the Wulff shape, but deviates
from Wulff when DFmc grows substantially, as the DFmc term represents the isotropic feature of the
growth dynamics while the other parts denote the anisotropic feature in the Wulff shape. The
equivalence of the steady-state shape to Wulff when DFmc ! 0 has been proven based on a numerically
verified interface normal velocity model. The ‘‘critical” DFmc for marked deviation from Wulff estimated
from order analysis of the system evolution equation, is very closed to the point where the normal
velocity (Vn) changes its dependence on DFmc from Vn / DFmc to Vn / ðDFmcÞ0:5.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many thermodynamic and kinetic parameters of materials are
anisotropic, such as elastic constants, diffusion coefficients, and
surface/interfacial energies. These anisotropies have great effects
on the evolution dynamics and/or the final microstructural mor-
phology in materials processing. Particularly, anisotropy of interfa-
cial energy is considered to be responsible, at least partially, for
some special morphology of the new phases in phase transition,
such as dendrite in solidification [1–3] and Widmanstätten
microstructure in austenite–ferrite transformation [4–6].

Phase-field modeling (PFM), in which interfacial anisotropy can
be conveniently considered, has been proven to be a powerful tool
for microstructure evolution simulation [7–9]. In PFM, the free
energy density for a structurally non-uniform system is comprised
of chemical free energy and interfacial energy in a form typically

like f ð/;r/Þ ¼ f 0ð/Þ þ e2
2 jr/j2, where f 0 is the chemical free

energy density, / is the phase-field order parameter and e is the
gradient energy coefficient. The interfacial anisotropy can be intro-
duced by making e orientation-dependent. For example a general
form, e ¼ e0½1þ c cosðkhÞ�, is proposed for two-dimensional simu-
lations [10], where e0 is the mean value, h is the angle between
the unit normal vector of the interface and a reference direction,
c is the amplitude of anisotropy and k is the folds of symmetry.
Based on this general form, many variants have been adopted for
different applications [4,11]. For three-dimensional problems a
form, e ¼ e0½1þ cðn4
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z Þ�, is made by Karma and Rappel
[2] for cubic metals, where nx, ny and nz are Cartesian coordinates
of the interface normal vector n̂. More recently, another form
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is suggested by Qin and Bhadeshia [12] with more terms for wider
representation, where e1, e2 and e3 are anisotropy coefficients
which can be determined experimentally or assessed using compu-
tational methods. The ‘‘interface” in this study could be either
amorphous–crystal or crystal–crystal interface. In the latter case,
note that generally the interfacial energy depends on both the
interface orientation and the misorientation of the crystals across
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the interface, just like the five freedoms a grain boundary has.
However once the misorientation of the neighboring crystals
across the interface is fixed, the interfacial energy varies only with
respect to the orientation of the interface; that is the case repre-
sented by the above form by Qin and Bhadeshia [12].

The characteristics of dynamics of systems with interfacial ani-
sotropy in PFM models have been extensively investigated, espe-
cially the shape evolution of particles embedded in a matrix
phase. For conserved systems described by the Cahn–Hilliard
(CH) equation [13,14], the equilibrium shape is found to be identi-
cal with the prediction from Wulff’s theorem that gives the mini-
mum total surface/interface energy for a volume-fixed particle
with anisotropic surface/interface energies [15,16]. For non-
conserved systems described by Allen–Cahn (AC) equation
[17,18], there is no equilibrium state; instead a steady-state shape,
in other words, a self-similar shape, can be obtained. Driven by the
curvature effect alone, the particles will shrink and evolve into a
steady-state shape that is identical with what predicted by the
Wulff’s theorem, which has been analytically proved by Taylor
and Cahn [19] and others [20,21]. Moreover, people studied the sit-
uation when the AC model is supplemented with a constant-
volume constraint reserving the volume of the product phase,
and found that the final stationary state is still consistent with
the Wulff shape [22].

A typical Allen–Cahn model as above mentioned only considers
the curvature effect, and it is very common to introduce other
additional physical driving forces [12,23]. A simple example would
be adding a constant isotropic phase transformation driving force,
e.g., the system is chemically uniform and consequently there is no
diffusion involved. Under such circumstance, the steady-state
shape could be markedly deviated from the Wulff shape [12]. Here
we propose a hypothesis trying to explain this deviation of the
steady-state shape from the Wulff shape. We postulate that the
additional phase transformation driving force should contribute
to the particle’s steady-state shape, i.e., there exists a competition
of the isotropic driving force with respect to the anisotropic curva-
ture effect. However, to our best knowledge, this hypothesis,
including the relative strength of the competition and its detailed
effects for the similarity between the two shapes, has not been tes-
tified yet. Therefore, the motivation for the present work is to sys-
tematically analyze the above competing effects, more specifically,
to evaluate their influence on the similarity between the PFM and
Wulff predictions, and to locate possible transition points between
different morphological features and so on.

Correspondingly this paper is organized as follows. We first
briefly summarize the theory of non-conserved PFM with interfa-
cial anisotropy, and the overall features of the morphology evolu-
tion of the product phase are analyzed based on the master
equation for the evolution of the system in Section 2. Numerical
simulation results are presented in Section 3 to give a quantitative
evaluation of the competition effects of the interfacial anisotropy
and the phase transformation driving force. Finally, steady-state
shapes are classified according to their similarities to the Wulff
shape, and theoretical illustrations for typical evolution features
are discussed.

2. Phase field method

Phase-field modeling (PFM) is a powerful framework to incor-
porate various physical energies/effects in the simulation of
microstructural evolution in phase transformations. The funda-
mental idea is to use continuum field variables / to denote the
phases in the system; and the evolution of the microstructure is
represented by the temporal evolution of the field variables / dri-
ven by the reduction in the free energy of the system. The signifi-
cant computational advantage is that it avoids explicit tracking and

setting up rules of evolution for the interfaces. For a system with a
single phase variable, the total free energy is given by an integral of
the free energy density over the total volume:

F ¼
Z
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where the chemical free energy density f0 is chosen in a double-well
function form [24,25]:

f 0ð/Þ ¼ ½1� hð/Þ�f m þ hð/Þf c þ
1
4w

gð/Þ ð2Þ

where fm and fc are the free energy density of the two bulk phases,
the matrix phase denoted by / ¼ 0 and the child phase by / ¼ 1,
respectively; a non-zero difference in fm and fc
(DFmc ¼ f m � f c > 0) constitutes a constant driving force for phase
transformation. hð/Þ is the interpolation function that should satisfy
the following requirements: it is a monotonic function in [0, 1] with
hð0Þ ¼ 0 and hð1Þ ¼ 1; and the chemical free energy density should

have two minima in the two bulk phases as @hð/Þ
@/

���
/¼0;1

¼ 0.

gð/Þ ¼ /2ð1� /Þ2 is the double-well potential function, which guar-
antees the free energy density has two local minima at / ¼ 0 and
/ ¼ 1. The energy barrier parameter w is a coefficient reflecting
the kinetic barrier between the two minima. The coefficients w
and e are analytically related to two physical quantities, the interfa-
cial energy r ¼ e=ð6
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Þ and the interface thickness 2k ¼ 4:2e
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[12]. The temporal evolution of /ð~r; tÞ (~r denotes the location of the
material point) follows the Allen–Cahn equation [17,18]:
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where M/ is the kinetic coefficient characterizing the interface
mobility and can be derived from the interface kinetics [26–29]
and dF=d/ is the functional derivative of the free energy functional
with respect to the phase-field variable.

Now we introduce the desired orientational anisotropy into
PFM by making e varies as a function of the interface normal vector
n̂:

n̂ ¼ r/
jr/j ð4Þ

This gives ni ¼ /;i
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, where i represents one of the axes in

Cartesian coordinates and /;i ¼ @/=@xi. The gradient energy coeffi-
cient can be represented as eðn̂Þ ¼ e0gðn̂Þ, where gðn̂Þ is the aniso-
tropy function and expressed as [12]:
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Three typical sets of parameters are listed in Table 1 and the
corresponding polar diagrams are presented in Fig. 1. These values
are used in the following numerical simulations, and are chosen to
be identical to those adopted in Ref. [12] for the sake of
comparison.

Strong anisotropy leads to artificial ‘‘ears” in theWulff shapes as
for cases A and C if the Wulff shape is constructed by the paramet-

Table 1
Coefficients of the anisotropy function applied in phase-field models.

Case A Case B Case C

e1=e0 �0.863 0.402 1.8655
e2=e0 0.395 0.00144 0.2555
e3=e0 0.0238 0.00066 0
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