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a b s t r a c t

The scattering of an electromagnetic wave by a particle is directly related to its Chord Length Distribution
(CLD) in certain cases. Whereas the CLD of convex bodies, e.g. sphere, ellipsoids, cylinders. . ., can be easily
calculated, few studies have been conducted on the CLD of non convex bodies which are more difficult to
ascertain. Two non convex bodies built from two spheres, i.e. dumbbells and diabolos, were considered.
Firstly, we describe original algorithms designed for calculating the intersection between a straight line
and these particles. Then the corresponding CLDs are calculated by using the Monte-Carlo method.
Analysis of the deviation of these CLDs from the CLD of the sphere can identify precisely the main features
due to some local non convexity. The corresponding items are expressed as a function of a non convexity
parameter.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many manufacturers use solid micro-particles in suspension for
various applications: ceramics, paintings, pharmaceutics, cosmet-
ics, food and chemicals. Particle size can be evaluated by physical
methods based on the scattering of an incident electromagnetic
wave as it strikes the particle. The scattered wave depends on
the particle morphology as well as on the ratio between the refrac-
tive indices of both the material and suspension medium.
Depending on the material, the particle morphology and the
selected method, the signal measured may be straightforwardly
related to the Chord Length Distribution (CLD) of the set of the ran-
domly orientated particles. This is applied for Small-Angle
Scattering (SAS) measurements [1,2], Focused Beam Reflectance
Measurements (FBRM) [3], Spectral Turbidimetry, i.e. extinction
measurement [4].

Whereas a straight line passes just once through a convex body,
it may intersect more than one time across a non convex body. As a
consequence, there are two chord length distributions which can
be defined as:

– The Multiple Chord Distribution (MCD) where each segment
interval on the same line is considered as one chord length sep-
arately. FBRM measurements and experiments in the field of
SAS are associated with MCD.

– The one chord distribution (OCD) where the sum of chord
lengths for all intersected intervals is used as the definition of
the chord length. Turbidity measurements are associated with
OCD.

The CLD of convex and non-convex bodies has been studied
mathematically [5–7]. Explicit expressions have been obtained
for bounded 2D or 3D convex domains: disc, triangle, rectangle,
regular polygon [8], sphere, hemisphere [9], cylinders of various
cross sections [10,11], spheroids [12], polyhedron [13,14].

However, to the best of our knowledge little attention has been
paid to non convex bodies compared to convex ones. Mazzolo et al.
[15] discussed the CLD in the context of reactor physics. They
showed that some relations between lower moments of CLD and
simple geometric properties as volume, surface, . . . of the body
remain valid for non-convex bodies whereas higher CLD moments
do not obey the simple relations valid for convex bodies. Gille [16]
studied the CLD of an infinitely long circular hollow cylinder that is
a special case of non convex body; the corresponding calculation
was based on basic mathematics. Vlasov [17] introduced the
notion of signed chord distribution for convex and non-convex
bodies. He started from the work of Dirac to reduce the
six-dimensional integral of pairwise interaction potential for a con-
vex body into a simpler expression including the CLD; then he
extended this to a non convex body, showing that the expression
of the integral is much more complicated than the one for a convex
body. In the case of non convex body the integral can be decom-
posed into several terms (integrals), each related to the various
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segments of the given chord inside the non convex body. Vlasov
formally deduced the expression of the CLD for the non-convex
case. Gruy et al. analytically calculated the CLD of a two-sphere
cluster [18] and a dumbbell [19].

There are some results linking CLD’s with scattering experi-
ments, particularly SAS-measurements, for non convex particles.
This aspect has been analysed by Gille [20]. The geometric and
physical quantity directly related to the SAS-intensity is the cor-
relation function cðrÞ. The function r2cðrÞ is proportional to the
distance distribution function. For instance, using cylindrical
models, Gille [21] has studied the relation between non-convex
particles and SAS. He derived explicitly the correlation function
for two touching circular cylinders and deduced the second
derivative c00 that is proportional to the CLD for convex particles.
When analysed he found five contributions for c00: each corre-
sponding to a chord crossing a given sub-space: either traversing
a sole cylinder, both cylinders or the space between the two
cylinders. . .. Therefore, this example proves that the CLD is
related to the scattering intensity in a more complex manner
for the case of non convex particles as opposed to convex parti-
cles. Kaya [22], Kaya and De Souza [23] have studied barbells and
dumbbells and the related convex particles, i.e. capped cylinders.
They calculated the corresponding form factors. Senesi and Lee
[24] have indirectly studied non convex bodies. They presented
a general method to calculate the scattering functions of
polyhedra. These are calculated by breaking the body into sets
of pieces. This work included the calculation of concave bodies.
Ciccariello et al. [25a,25b] have considered the small-angle scat-
tering from anisotropic samples and have found a simple
expression between the scattering intensity and the absolute val-
ues of Gaussian curvature at particular surface points. They show
that this equation is also valid for non convex particles. This
corpus of work emphasizes the links between scattering theory
and stochastic geometry, integral geometry and differential
geometry.

Among the particle shapes observed in suspensions during a
precipitation or crystallization process, small clusters of spherical
particles are often present [19]. The contact between the two
spheres in the cluster can be a single point or a neck due to sinter-
ing. This type of particle is one of the simplest cases of non convex
bodies. Therefore, in this paper, we explore the properties of their
CLD’s and the relationship between CLD and convexity. Due to the
complexity and difficulty of exact analytical calculation, CLD’s will
be obtained from Monte-Carlo Simulations (MCS).

The rest of the paper is organized as follows: section two intro-
duces the algorithms used for MCS. The data issued from MCS for
some non convex bodies are presented and discussed in the section
three, followed by a conclusion and perspectives for future work in
section four.

2. Chord length distributions by Monte-Carlo simulations

Our work focuses on OCD calculations with 3D uniform flow of
lines.

Note: throughout the paper and the literature, the chord length
distribution (density) is written DlðlÞ where 0 6 l 6 lmax. DlðlÞdl is
the number of chords within the l-range ½l; lþ dl�. DlðlÞ is usually

presented as normalized, i.e.
R lmax

0 DlðlÞdl ¼ 1.
In this article three kinds of particles are considered and com-

pared, that are bodies of revolution along the x-axis. They are com-
posed of spheres or parts of a sphere. The centres of spheres are
symmetrically located along the x-axis. The origin of the coordinate
system is the symmetry centre of the particle. The three particles
are:

– Sphere with radius R1 (Fig. 1a).
– Cluster of two overlapping spheres (Fig. 1b); the radius of

spheres is R1 and the distance between the two centres is
denoted d. This type of cluster will be designated dumbbell
[19]. A particular case is the cluster of two touching spheres:
d ¼ 2R1.

– A cluster of two touching spheres where the neck (or overlap) is
partially filled with matter (Fig. 1c); the radius of spheres
is R1 and the upper boundary of the neck is a part of a torus with
a minor radius R2; as the torus is tangentially linked to the
spheres, the major radius R3 obeys the expression

R3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

2 þ 2R2R1

q
. This type of cluster will be called a diabolo.

An example is the convex body corresponding to R2 !1, i.e.
a capsule. The cluster of two touching spheres corresponds to
R2 ! 0.

A MCS software was employed to generate an isotropic uniform
random line across the geometric object, and to collect the chord
length segments. The same framework for the Monte Carlo
Simulations (MCS) of the different particle shapes has been used.

All the distances are normalized by R1 (then, R1 = 1). Consider a
sphere with radius 2 and its centre located at the origin. The way
used to define the random straight line is the following: A direction
and a point belonging to the plane orthogonal to that direction and
tangent to the sphere are considered. The coordinate system of the
plane is composed of the point of tangency and the vectors from
the usual spherical coordinate system. The line will be defined by
the two angles, polar h and azimuthal /, and the two coordinates
xP, yP of the point in the plane. Four random numbers [26] are cho-
sen for the values of the variables cosh, /, xP and yP. The line inter-
sects the sphere at two points denoted M1 and M2. This algorithm is
known to provide a translation and rotation invariant density [27].

Depending on the particle, the straight line between M1 and M2

may intersect the particle 0, 2, 4 or 6 times. The intersection points
will be analytically determined and the corresponding distances
calculated. The details of these calculations based on the analytic

Fig. 1. Sphere (a), Dumbbell (b) and the Diabolo (c).
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