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a b s t r a c t

The effect of virtual long-period stacking-ordered (v-LPSO) structures (6H, 10H, 14H, 18R and 24R) on the
second order elastic constants and third order elastic constants of pure Mg are systematically investi-
gated using first principles methods combined with finite strain theory. The predicted lattice constants
and formation energies are in a good agreement with the available data. The pressure effect on
anisotropy, Pugh ratio, Vickers hardness and Debye temperature are also presented. The anisotropy
and Pugh ratio of 2H and v-LPSO Mg are not sensitive to pressure, except for 10H. The anisotropy of
10H increases with pressure, but Pugh ratio decreases. v-LPSO structures can only slightly improve the
ductility of Mg. It is also found that 2H and 18R have nearly the same Pugh ratio and Vickers hardness.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Magnesium alloys have become increasingly attractive in the
fields of microelectronics, aerospace and automotive industries
during the past two decades due to light weight and high specific
stiffness. However, inherent limitations of strength and formability
are obstacles to wider spread application of magnesium. Recently,
ternary Mg–Zn–Y alloys have attracted considerable attention due
to their excellent mechanical properties [1–7]. These rapidly
solidified powder metallurgy Mg–Zn–Y alloys had high tensile
yield strength (480–600 MPa), good elongation (5–16%) and good
ductility [1]. The remarkable properties make Mg–Zn–Y alloys
the promising candidate lightweight structural materials for
ambient- and elevated-temperatures application. The further
microstructure research indicated that a novel long period stacking
ordered (LPSO) structure combined with fine precipitates plays a
crucial role in improving the mechanical properties. Five typical
LPSO structures (6H, 10H, 14H, 18R and 24R) in Mg–Zn–Y alloys
have been revealed by various experiments [5–11]. Therefore, it
is of vital importance to investigate the thermodynamic stability,
mechanical properties, and inter-transformation mechanism of

LPSO structures [8–11]. In order to elucidate these effects of LPSO
structure, virtual LPSO (v-LPSO) models are constructed firstly by
Fan et al. for pure Mg (denoted by 2H Mg due to the hexagonal
structure and two atoms in unit cell) in accordance with experi-
mental observations [12,13]. Iikubo et al. examined the transfor-
mation behavior in terms of temperature and lattice expansion
by means of a first-principles calculation [5]. The results show that
the substituted large atoms and temperature effect cooperatively
generate LPSO structures. The deformation electron density of
v-LPSO Mg are investigated by Wang et al. [14]. The electronic
structure of v-LPSO are similar to that of deformation stacking
fault. They articulate that transformation between LPSO structures
is related to the reduction of dislocation density during heat treat-
ment. Tane et al. calculated the elastic modulus of 18R v-LPSO
structure Mg [6]. The results reveal that the elastic properties of
18R is almost the same as those of 2H Mg, which implies that
the long periodicity of 18R type stacking structure hardly affects
the elastic properties.

The purpose of the present study is to systematically examine
the effects of v-LPSO (6H, 10H, 14H, 18R and 24R) structure on
elastic properties of Mg using first-principles combined with finite
strain theory. To benchmark the reliability of the presented
method, we firstly calculate the lattice constants and formation
energy of v-LPSO Mg. Later, the second order elastic constants
(SOECs) and third order elastic constants (TOECs) are calculated
for v-LPSO Mg. Based on the SOECs and TOECs, the Anisotropy,
Pugh ratio, Vickers Hardness and Debye temperature under
different are also presented.
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2. Computational method

2.1. Calculations of first-principles

First-principles calculations are performed using the VASP code
based on the density of functional theory with the generalized gra-
dient approximation (GGA) [15–17]. All calculations on 2H, 6H,
10H, 14H, 18R and 24R are carried out by using the Perdew–Burke–
Ernzerhof (PBE) exchange–correlation function, as implemented in
VASP code [18,19]. The self-consistent converge is set to a value
of 10�6 eV per atom on the total energy. Wave functions are
expanded by the plane waves up to a cutoff energy of 500 eV for
2HMg, the rest of LPSO structures is set at 400 eV. The convergence
of the total energywith respect to both k-point sampling and plane-
wave cutoff energy is carefully examined. In addition, for 2H–Mg,
Brillouin-zone integrations are optimized by using the special
k-point sampling of Monkhorst-Pack scheme with a 21 � 21 � 21
grid k-point Monkhorst-Pack mesh for the lattice and elastic con-
stants calculations. Further more, the k-point Monkhorst-Pack are
set at 21 � 21 � 5, 21 � 21 � 5, 21 � 21 � 3, 21 � 21 � 1 and
21 � 21 � 1 for 6H, 10H, 14H, 18R and 24R, respectively [20].

2.2. Finite-strain theory of elastic deformation

In this paper, finite-strain elastic theory combined with first-
principles is used to calculate the elastic constants. Thurston and
Wallace [21–24] have discussed this theory in details. ai, stand
for the initial coordinate of elements, after homogeneous deforma-
tion happened, its coordinate turn into vi ¼ viðajÞ, deformation
gradient of material strain is as follows

Fij ¼ @vi

@aj
ð1Þ

According to deformation gradient, Lagrangian strain tensor
will be defined

gij ¼
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Lagrangian strain have symmetry, and it does not contain the
information about the rigid rotation of material. Under the condi-
tion of constant entropy of elastic strain, the elastic constants
can be defined as the Taylor series expansion of unit internal
energy [21–23].
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where q0 is the initial mass density of material, and the initial state
is assumed to be without pressure. Due to the rigid rotation, inter-
nal energy is unchanged. In terms of symmetry strain, the Taylor
series expansion is appropriate, the expansion coefficient is the
isentropic SOECs and TOECs
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Similarly, under constant temperature, expansion the Helm-
holtz free energy of unit mass, can get isothermal elastic constants

q0F gij; T
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In the first-principle calculation, the isothermal elastic con-

stants will be calculated. In computing, the temperature set at
0 k, so we can get

F gij; T ¼ 0K
� �

¼ U gij; T ¼ 0K
� �

ð8Þ

In the finite-strain theory of elastic deformation, the elastic con-
stants can completely describe the elastic response of solid. For the
elastic constants of hexagonal cubic primitive, special strain ten-
sors have to be introduced. And the none-zero partial of each strain
tensor are presented by the same constant n. From Eq. (4), the rela-
tion between elastic energy and strain constant is as follows [24]

q0½UðnÞ;Uð0Þ� ¼
1
2
A2n

2 þ 1
6
A3n

3 þ Oðn4Þ ð9Þ

where Uð0Þ is the initial energy, A2 and A3 are closely connected
with the SOECs and TOECs (see [24]). As we know, the lattice sym-
metry is associated with the number of independent elastic con-
stants, and the higher symmetry, the less the number of
independent elastic constants. For HCP structures, there are six
independent SOECs and ten independent TOECs. To obtain these
SOECs and TOECs, use the relation between fitting coefficient
A2; A3 and elastic constants, establish a series of equations, through
the establishment of system of linear equations to solve. In order to
get effective system of linear equations, at least to choose the num-
ber of strain tensor same as the number of independent elastic con-
stants. In this work, ten necessary strain tensors gij will be used see
[24].

3. Results and discussion

3.1. Lattice constants and formation energy

Before the calculation of elastic constants, the lattice constant
have to be optimized. The structures of 2H and v-LPSO Mg are
shown in Fig. 1. Both 2H and v-LPSO structure Mg have the hexag-
onal structures [5]. There are 6 atoms, 10 atoms, 14 atoms, 18
atoms and 24 atoms for each unit cell of 6H, 10H, 14H, 18R and
24R, respectively. The lattice constants obtained by first-
principles calculations are listed in Table 1. As shown in Table 1,
the lattice constants are well in agreement with previous results

Fig. 1. Crystal structure of 2H and v-LPSO structure Mg.
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