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a b s t r a c t

The paper developed computation method to predict the behavior of hysteresis loops via an explicit func-
tion. Based on the Fermi–Dirac statistics and assumption of magnetic domains as fermions, formulations
to successfully explain magnetic hysteresis loop are devoted. The capability of the newmodel to calculate
the characteristics of magnetic hysteresis loop was tested by comparing the experimental results of both
the variation of magnetic induction with magnetic field intensity and variation of magnetization along
magnetic field intensity. The results of the application of the new model confirm the reliability of the
procedure. The differences between the calculated and the measured data are always less than the data
tolerance usually declared by the experiments. Particular attention to the influences of temperature on
the parameters in the explicit function results in determination of magnetization of fixed ferromagnetic
material by both magnetic field and temperature. Besides, the paper shows that coercively of ferromag-
netic materials can be indicated by temperature. The technique given in this paper is found to be very
advantageous for understanding the hysteretic problems.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

To determine the electromagnetic properties of magnetic mate-
rials, manymeasurements of the magnetic hysteresis loop for mag-
netic materials were performed under dc, or quasi dc, conditions
[1–8]. The benefit of magnetic hysteresis loop has covered the areas
of (a) solid state physics/condensed matter physics, (b) general
physics, (c) materials science and magnetism/electromagnetism,
as well as relevant encyclopedias and physics dictionaries. In order
to understand how the magnetic properties of ferromagnetic mate-
rials are changing under physical and chemical conditions, hystere-
sis modeling is of high importance. Over the years, several models
are introduced-among the more popular ones are the Jiles–
Atherton model [9] and Preisach theory [10]. Jiles–Atherton model
and many modifications on Jiles–Atherton model [11–13] are
differential equations to simulate hysteresis loop of ferromagnetic
materials. For solving most important computational problems
connected with the Jiles–Atherton model the Gauss–Kronrod
quadrature formula, the Runge–Kutta methods and Matlab
implementation of DIRECT algorithm have to be used. The Preisach
theory and models based on the Preisach theory [14–16] consist of
many relay hysterons connected in parallel, given weights, and
summed. Therefore, the applications of Jiles–Atherton model,

models based on the Jiles–Atherton model, the Preisach theory
andmodifications on Preisach theory are not easy works. Of course,
onemethod known as a history-differential model [17] is very com-
plex inmathematics. AlthoughMonte Carlo simulationmay be used
to explain the hysteresis loops of single-domain particles [18], the
physical meaning of the parameters obtained via Monte Carlo
method are often not clear. It may be stated that many models
are available to investigate hysteretic characteristics of ferromag-
netic materials but they tend to be complex and difficult to
implement.

Explicit function to calculate hysteresis loop of ferromagnetic
materials is of continuing interest because the data are pertinent
to the theory of ferromagnetic materials and to the understanding
of the properties of ferromagnetic materials. The aim of the present
paper is to propose an explicit function able to accurately represent
the hysteresis loop of ferromagnetic materials on the basis of the
experimental results. The model in form of explicit function is
derived from Fermi–Dirac distribution and phenomenological
method. The accuracy of the explicit function is checked by com-
paring the results of the explicit function to experimental results
of hysteresis loop of three ferromagnetic materials, the experimen-
tal data showed very good agreement with the simulation results.
Moreover, another novelty of the work is how hysteresis loop of
ferromagnetic materials is controlled by temperature is explained
via mathematical way. Hence, the model accuracy is good and
can be easily adapted to the requirements of the application.
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2. Methodologies

In the view of classical electrodynamics, the energy produced

inside the magnetic moment, l
*
, by magnetic induction, B

*

, is l
* � B

*

,
while, in according with the quantum mechanics, the energy cre-

ated inside the magnetic moment, l
*
, by magnetic induction, B

*

,
become MslgB, where, Ms is magnetic quantum number and g is
Lande factor in this expression. The variation of magnetization,
M, along magnetic induction, B, is nonlinear due to the character-
istic of magnetic domains existing in ferromagnetic materials. In
order to explain magnetization via magnetic induction using quan-
tum statistics, the magnetic domains is suggested to be fermions in
this paper, therefore, the Fermi–Dirac distribution should apply to
magnetic domains. Fermi–Dirac distribution is usually written as:

f ðEÞ ¼ 1
1þ expððE� Ef Þ=kTÞ ð1Þ

where f(E) is the probability that a particle will have energy E, Ef is
Fermi energy, T is absolute temperature, k is Boltzmann constant
and its value is k = 1.38 � 10�23 in SI unit.

Because the energy of magnetic domains is proportional to
magnetic induction, the useful energy produced by magnetic field
in average magnetic domains is

E ¼ M�lgB ð2Þ
or

E ¼ l
* � B!¼ jl*k B!j cosa ð3Þ

where l
*
is average magnetic moment of magnetic domain and a is

angle between magnetic field and average magnetic moment of
magnetic domain. Since the energy of magnetic domains obtained
from magnetic field is proportional to magnetic induction in both
quantum mechanics and classical electrodynamics, in this paper,
the energy created by magnetic induction in magnetic domains is
expressed using classical electrodynamics. Hence, the probability
that a magnetic domain may be with energy of E ¼ �l cosaB via
magnetic field is

f ðEÞ ¼ 1
1þ expððE� Ef Þ=kTÞ ¼

1
1þ expðð�l cosaB� Ef Þ=kTÞ ð4Þ

A new form of function (4) is

f ðEÞ ¼ 1
1þ expðð�l cosaB� Ef Þ=kTÞ

¼ 1

1þ exp B� Ef
�l cosa

� �.
kT

�l cosa

� � ð5Þ

It is easy to rewrite the probability that a magnetic domain can
be with energy of E ¼ �l cosaB

f ðEÞ ¼ f ðBÞ ¼ 1
1þ expððB� B0Þ=B1Þ ð6Þ

hence, parameters B0 and B1 can be defined as below:

B0 ¼ Ef

�l cosa
ð7Þ

B1 ¼ kT
�l cosa

ð8Þ

Furthermore, one direct conclusion is that magnetization is pro-
portionate to the probability, f(E), in ferromagnetic materials,
therefore, magnetization, M, can be write mathematically as:

MðBÞ ¼ M2

1þ expððB� B0Þ=B1Þ ð9Þ

where M2 is proportional constant, it will be determined via both
mathematics and boundary conditions in measurements. Hence,
as the magnetic induction, B, approaches very high corresponding
to magnetic induction, B, to tends to infinity in mathematics, the
probability function f(E) asymptotically to zero:

f ðEÞjB!1 ¼ f ðBÞjB!1 ¼ 1
1þ expððB� B0Þ=B1Þ

����
B!1

¼ 0 ð10Þ

When the magnetic induction approaches large enough in the
forward direction, there is one saturation magnetization in the
magnetization vs. magnetic induction curve, and this saturation
magnetization can be known as the right top saturation magneti-
zation, Mrtsat:

MðBÞjB!1 ¼ Mrtsat ð11Þ
Boundary condition (11) predicts that the magnetization and

magnetic induction should be related as:

MðBÞ ¼ M1 þ M2

1þ exp B�B0
B1

� � ð12Þ

To define the significance of M1 and M2 not only depend on
mathematical considerations, but also depend on boundary condi-
tions given by experiment. Hence, another mathematical result is
given by (13)

exp
B� B0

B1

� �����
B!�1

¼ 0 ð13Þ

When the reverse magnetic induction approaches low enough,
the experimental results indicative that the magnetization, M(B),
goes asymptotically to another constant value know as the left bot-
tom saturation magnetization, Mlbsat:

MðBÞjB!�1 ¼ Mlbsat ð14Þ
Combining Eqs. (12)–(14) yields

M2 ¼ Mlbsat �Mrtsat ð15Þ

M1 ¼ Mrtsat ð16Þ
Substitution of Eqs. (15 and 16) into (12) leads to following

expressions:

MðBÞ ¼ MðBÞjB!1 þMðBÞjB!�1 �MðBÞjB!1

1þ exp B�B0
B1

� �
¼ Mrtsat þ Mlbsat �Mrtsat

1þ exp B�B0
B1

� � ð17Þ

hereMrtsat is the saturation magnetization at right top predicted
via Eq. (17), Mlbsat is the saturation magnetization at left bottom
expected by Eq. (17). B0 is the inflection point magnetic induction.
Meanwhile, the average value of the magnetization is fixed at B0. B1
is constant of magnetic induction. Magnetization can be successful
explained by magnetic induction in forward direction via function
(17) because it is derived from the quantum statistics and without
any approximation.

When the magnetic induction-dependent magnetization in
reverse direction is considered, it is not difficult for one to read:

MðBÞ ¼ M0
rtsat þ

M0
lbsat �M0

rtsat

1þ expððB� B0
0Þ=B0

1Þ
½M0

rtsat ! M0
lbsat� ð18Þ

The variation of magnetic induction, B, with applied field (mag-
netic field intensity), H, is also hysteresis curve for a ferromagnetic
material, attention should be paid to the mathematical relation-
ship between B and H. Since both curves M against B and B along
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