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Due to size effects, the conventional material constitutive models are no longer valid in the investigation
of micro-forming processes. In this work, a nonlocal physically based crystal plasticity FEM is developed
to investigate the size effects of micro-forming. Except for statistically stored dislocations, geometrically
necessary dislocations on the slip systems are introduced and calculated via the mesh-free paradigm. The
micro-tensile and micro-deep drawing experiments of polycrystalline copper foils with different
thicknesses and grain sizes are used to calibrate the presented nonlocal model. The comparison between
simulations and experiments shows that the nonlocal physically based crystal plasticity FEM is capable of
describing both the first order and the second order size effects of the micro-forming processes, and
providing more microstructural clues for the interpretation of these size effects. Furthermore, the
simulations of micro-deep drawings demonstrate that the presented nonlocal method is robust in the
simulations with complex contact boundary conditions.
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1. Introduction

The rapid development of micro-electro-mechanical system
and micro system technology places a greater demand on the mass
fabrication of micro-parts. Micro-forming, which manufactures
micro-parts with the desirable geometries via plastic deformation,
is attractive for the low-cost and mass production of micro-parts
[1,2]. Lots of micro-forming processes have been extensively
explored in recent years, such as upsetting, extrusion, bending,
deep drawing, and blanking [3-6]. As the size of micro-parts is
scaled down to the micron level, which is close to the intrinsic
microstructural length scale of materials, e.g,, the grain size and
the mean free path of dislocations, size effects occur obviously. It
is found that the well-established knowledge of the conventional
metal forming processes is not applicable in micro-forming pro-
cesses due to the size effects. The trial-and-error approach is gen-
erally used for the design of micro-forming processes. However,
such method is time-consuming and costly, and the quality of parts
is not assured [7]. The optimization of micro-forming needs more
comprehensive understanding of the mechanical behaviors of
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materials. Due to the lack of intrinsic material length scale and
microstructural information, the traditional material models are
not yet sufficient to describe the mechanical behaviors (i.e., various
size effects) of materials at micro-scale. Therefore, developing the
state-of-art models and numerical techniques are crucial for the
investigation and optimization of micro-forming processes.

The size effects at micro-scale are often divided into two cate-
gories, i.e., the first order and the second order size effects [8,9].
The first order size effects include all effects resulting from the dis-
crete granular anisotropic nature of microstructures. For example,
the plastic deformation behavior is dominated by a few grains
located in the deformation region, the material microstructures
are not homogeneous, the grain size, crystallographic orientation,
and dislocation density show more pronounced effects on the
mechanical behaviors of metallic polycrystalline materials at
micro-scale. The second order size effects mainly refer to the
strengthening effect of strain gradients or slip gradients due to
the inhomogeneous plastic deformation.

For polycrystalline metals at micro-scale, because of limited
grains in the deformation region, the first order size effects involve
the influence of the grain size (D), sample size (e.g., thickness t),
orientation, etc. Janssen et al. conducted the uniaxial tensile
experiments of pure aluminum foils with a few grains across the
thickness, and found that the ratio t/D(Z) has a marked impact
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on flow stress, it also shows that the classic HalL-PercH relation is
not suitable for this case [10]. Lederer et al. performed the tensile
tests of high purity aluminum foils with different thicknesses at
different temperatures. It is found that t and D are the major
contributions to the size effects [11]. The micro-tensile tests of
nickel polycrystals show that /. also affects the hardening stages,
flow stress, intragranular and intergranular back stress of samples
[12]. Kals and Eckstein found from the tensile experiments of pure
copper foils that the grains in the surfaces weaken the global
strength of samples, it is explained that theses grains have more
active slip systems due to less constraint [13]. Liu et al. performed
the micro-bending experiments of pure copper foils, and found
that the elastic anisotropy of surface grains due to the difference
of the crystallographic orientation is the main reason for the
scatter of springback angles [14].

The strain gradient strengthening effect in the micro-scale
plastic deformation has received considerable attentions during
the past two decades. Experimental researches have been carried
out for different materials and deformation modes, such as
micro-torsion [15], micro-bending [16], and micro-indentation
[17,18]. All these experiments support that the strain gradients
strengthen materials. There is a general agreement that the strain
gradient effect, which usually manifests itself at micro-scale, can
be attributed to hardening enabled by geometrically necessary
dislocations (GNDs) [19]. GNDs represent an extra storage of dislo-
cations required to accommodate the lattice curvature which
arises whenever there is inhomogeneous plastic deformation
[20]. In contrast, statistically stored dislocations (SSDs) evolve from
the random trapping processes of dislocations during plastic defor-
mation, which do not give rise to significant lattice curvature.
Recent years, high-resolution electron backscattered diffraction
(HR-EBSD) has become an emerging tool to characterize GNDs den-
sities by analysis of lattice curvature [21,22]. However, in situ dis-
tribution of GNDs during plastic deformation and quantitative
determination of full-field GNDs are currently not available.

Obviously, the plastic deformation of polycrystalline metals at
micro-scale generally involves both the first order and the second
order size effects, a detailed study of microstructure evolution and
deformation mechanism must be conducted to investigate these
size effects. Though the continuum surface layer models [2,5,23]
are capable of describing several first order size effects, they fail
to describe the second order size effects. While the continuum
strain gradient plasticity models [15,24,25] are able to describe
the strain gradient effect, they cannot analysis the first order size
effects which are intrinsically present in engineering problems.
Moreover, the continuum material models ignore the crystallo-
graphic orientation and the discreteness (i.e., the granular nature)
of microstructures. Recently, the widely used micro-mechanical
models, i.e., crystal plasticity (CP) models, which describe the first
order size effects well, were elaborated into nonlocal CP models to
consider the second order size effects simultaneously [26-33]. The
length scale dependent internal state variables (ISVs), e.g, slip gra-
dients or GNDs densities of the slip systems are introduced into the
constitutive models. Among various nonlocal CP models, nonlocal
dislocation density based crystal plasticity finite element method
(CPFEM) [28-33], which utilizes the densities of SSDs and GNDs
as ISVs, and use the FEM framework to deal with boundary condi-
tions, is a promising tool to probe the size effects of the micro-scale
plastic deformation.

However, the numerical implementation of the nonlocal disloca-
tion density based CP models into the FEM framework raises a num-
ber of fundamental problems. The evolution law of GNDs densities
contains the gradients of shear rate of each slip system, i.e., the
GNDs densities in the considered integration point (IP) depend on
not only its plastic deformation state, but also the plastic deforma-
tion state of its surrounding IPs. The nonlocal characteristic of GNDs

densities makes it cannot be obtained directly from the classic FEM
framework. Meissonnier et al. implemented a nonlocal model via
writing a mix integration user element, the displacement field is
represented by a standard quadratic 20-nodes iso-parametric ele-
ment with reduced (2 x 2 x 2) integration, while the slip rate gradi-
ents are interpolated by a linear shape functions associated with
the eight corner nodes and full (2 x 2 x 2) integration [34]. Dunne
et al. adopted a similar scheme for the plane strain deformation
[35]. Evers et al. [28] and Arsenlis et al. [29] treated the densities
of GNDs and SSDs as additional degrees of freedom for every node,
derived a set of discretized iterative equations which were imple-
mented in in-house FEM codes based on a standard GALERKIN
approach. Such scheme does not require high order elements, can
be solved by using C°-continuous elements. However, it relies on
the additional dislocation density flux boundary conditions, which
are difficult to formulate for the complicated boundary value prob-
lems. Ma et al. [30], Lee and Chen [36] implemented nonlocal CP
models into commercial FEM codes via writing an user material
subroutine (UMAT) rather than an user element subroutine. The
procedure of their methods is: after the slip rates and plastic defor-
mation gradients at the eight IPs have been fully collected, these
variables at the eight nodes are obtained by an extrapolation
scheme, then the strain gradients and GNDs densities at the IPs
are determined by calculating the spatial derivatives of the linear
shape functions. Such scheme can be achieved in the updating of
material constitutive models, so it makes the nonlocal CPFEM
usable in the simulation of complex contact problems, e.g., micro/
nano-indentation [36,37]. However, due to the extrapolation
scheme from the IPs to the nodes, this scheme is limited to the
specific type of elements, e.g., the full-integration element.

The aim of this paper is to formulate a new numerical imple-
mentation of the nonlocal physically based material model without
modification and restriction of the conventional FEM codes, which
makes the nonlocal CPFEM comparatively robust and attractive
to be used in the simulations with complex boundary conditions,
e.g., micro-forming. The mesh-free methodology is adopted to
re-construct the shape functions of nonlocal variables, i.e., the GNDs
densities of the considered IP are evaluated according to its neigh-
boring IPs in a local compact domain. The implementation of pre-
sented nonlocal model is the same as a local one, the calculation of
nonlocal variables is achieved in the updating of material constitu-
tive model. The presented model is implemented into ABAQUS/
Explicit by writing an user material subroutine VUMAT to investi-
gate the first order and the second order size effects of micro-
forming, and its performance is verified by the comparison with
experiments of micro-tension and micro-deep drawing.

2. Theory
2.1. Finite deformation crystal plasticity theory

In this work, the kinematics of crystal plasticity model is estab-
lished in the hyperelastic frame. The multiplicative decomposition
of the total deformation gradient F can be expressed as [38]

F=FP (1)

where F® = 9X/0X and F* = 9x/0X. F* accounts for the inelastic
shear deformation along the crystalline slip planes, maps the initial
configuration (X) into the stress-free intermediate configuration
(X). F¢ is in charge of the rotation and elastic distortion of the lat-
tice, and maps the intermediate configuration into the current con-
figuration (x). By the time differentiation of Eq. (1), the additive
decomposition of the velocity gradient can be obtained as

L=FF' =FF"' +FLF’' 2)
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