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a b s t r a c t

To theoretically find a stable solid phase is not a trivial task even at 0 K. The difficulties multiply at high
temperature (T) because even more elaborate crystal structure prediction methods fail in the vicinity of
the melting transition. Moreover, if the submelting phase is dynamically unstable at low T some methods
cannot be applied at all. The method of metadynamics allows finding local minima of Gibbs free energy
without additional simplifications. However, so far this method has been mainly used for study of
pressure-induced solid–solid phase transitions and not in searching for T-induced ones. Here we study
the applicability of the technique to the latter class of problems as well as to the approximate determi-
nation of the transition temperature. We apply the metadynamics method to study the solid–solid phase
transition in Xe described by the Buckingham potential at high temperature and observe the fcc–bcc
phase transition in a pressure–temperature range consistent with earlier results.

� 2015 Published by Elsevier B.V.

1. Introduction

A temperature induced solid–solid phase transition at high pres-
sure is difficult to find in a diamond anvil cell (DAC) experiment [1].
Moreover, at high pressures and temperatures it is difficult to dis-
criminate a solid–solid phase transition from melting [2,3].

A ‘‘flat’’ melting curve, that disagrees with melting predicted by
the Lindemann criterion [4], was reported for Cu, Ni, and Fe [5],
Mo, Ta [6], Ar, Kr and Xe [7] in the DAC measurements. The ‘‘flat’’
melting curve can be seen in Fig. 2(a) in Ref. [7]. It was attempted
to explain this behavior by a temperature induced solid–solid tran-
sition (Fe [8], Mo [9], Ta [10], Xe [11]). The stable phase of Xe at
normal conditions is the face centered cubic (fcc) lattice. The exis-
tence of a temperature induced stable body centered cubic (bcc)
phase in Xe described by the Buckingham potential was proven
experimentally [11]. This result was later confirmed by ab initio
calculations [12]. Further, the triple-point fcc–bcc–liquid was
determined [13].

Direct computer simulations using variable-cell molecular
dynamics often fail to find a new phase due to free-energy barriers
that separate the phases. One of the methods that can be used to
determine the PT conditions at which such a phase transition
occurs is metadynamics. This method is based on the work of

Rahman and Parrinello [14] and Laio and Parrinello [15] and orig-
inally was applied to the studies of structural phase transitions in
crystals by Martoňák, Laio and Parrinello [16,17]. The main idea of
this method consists in modification of the free energy surface by
adding a history dependent term in such a way that the system is
effectively pushed out of the free-energy well. The important
advantage is that there is no requirement to know the possible
structures a priori. This method allows to search for minima of
the Gibbs free energy surface and, thus, for stable and metastable
crystal structures. Metadynamics was successfully applied for
searching new crystal structures obtained at high pressure and
possible pathways of the pertinent phase transitions [18–20].

In this paper, we apply metadynamics to explore a solid–solid
phase transition in Xe modelled with the Buckingham potential
for which the T-induced phase is known to exist [11], and con-
firmed by a recent study using the adiabatic free energy dynamics
(AFED) approach [21]. The aim of this study is to determine the
range of applicability of the metadynamics approach. This might
allow to apply it to other materials, e.g. transition metals such
as Mo, Fe, Cu, for which the existence of T-induced phases is
controversial [22–26].

2. Method

Metadynamics is a method for exploring the free energy surface
(FES) expressed as function of selected collective coordinates h [15].
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At given pressure and temperature a system in thermodynamical
equilibrium is always in a global or local minimum of the Gibbs free
energy GðhÞ ¼ FðhÞ þ PVðhÞ, where F is the Helmholtz free energy.
The approach of metadynamics is based on escaping the
free-energy minima by systematically adding a history-dependent
potential constructed as a sum of Gaussians centered along the tra-
jectory of collective variables [15].

For simulation of structural phase transitions in crystals the
primitive unit cell u could in principle be naturally used as order
parameter. It is, however, more convenient to instead use a super-
cell since this setup naturally provides the possibility of a final
structure with the number of atoms in the unit cell different from
that in the original one. In case of a relatively small simulation box,
where the creation of defects is too costly, the simulation box
edges a;b; c could be taken as collective coordinates which can
provide a coarse-grained description of the system. The matrix
H ¼ ða;b; cÞ, formed by three column vectors a; b and c, is related
to the unit cell via the relation H ¼ um, where m is an integer
matrix [14,16]. In order to freeze the irrelevant rotational degrees
of freedom, we can rewrite this matrix

H ¼
h11 h12 h13

h21 h22 h23

h31 h32 h33

0
B@

1
CA

as upper-triangular, i.e. one could set the matrix components
below the diagonal to zero and choose the 6D vector

h ¼ ðh11; h22; h33; h12; h13; h23ÞT as a collective coordinate. Close to

the equilibrium crystal structure h0, the Gibbs free energy could
be written as

GðhÞ � Gðh0Þ þ 1
2
ðh� h0Þ

T
Aðh� h0Þ;

where the Hessian matrix

Aij ¼ @2GðhÞ=@hi@hjjh0

can be calculated from finite differences of the pressure tensor [17].
Normally the potential well has a highly anisotropic shape. To
reduce this effect the collective variables are transformed to

si ¼
ffiffiffiffi
ki

p X
j

Ojiðhj � h0
j Þ;

where ki are eigenvalues of the Hessian matrix A and O is an orthog-
onal matrix which diagonalizes A. Here

� @G
@hij
¼ V ½h�1ðp� PÞ�ji;

where the volume of the system V ¼ detða;b; cÞ, p is the averaged
microscopic pressure tensor and P is the external hydrostatic pres-
sure. The collective variables evolve by equation

stþ1 ¼ st þ ds
~/t

j~/t j

with stepping parameter ds, and ~/t is the driving force

~/t ¼ � @Gt

@s

determined from the history-dependent Gibbs potential

GtðsÞ ¼ GðsÞ þ
X
t0<t

We�js�st 0 j2=2ds2
;

where Gaussians are placed at all visited points of the trajectory in
order to push the system out of the local minimum.

The implementation of metadynamics consists of three steps.
Two steps are preparative. The first is equilibration of the system
at given pressure and temperature and calculating the equilibrium

vector h0. Second is calculating the Hessian. This is made from
finite differences of the stress tensor components by altering each

of the 6 components of the vector h0 by ±1%. The third step is
metadynamics itself. The metadynamics code can be implemented
as a wrapper to a molecular dynamics (MD) simulation without the
need to modify the MD code. As the model of interaction the
Buckingham pairwise potential was chosen because there is a pro-
ven solid–solid phase transition at high temperatures [27]. The
potential is defined by the pairwise function

uBuckðrÞ ¼ A expð�r=qÞ � C
r6 ;

where parameters A ¼ 740899:6 kJ=mol, q ¼ 0:343846 Å and
C = 28944.64 Å6 kJ/mol were taken from the work of Ross and
McMahan [28]. The cutoff radius was taken to be 8 Å for large boxes
and 6 Å for boxes with less than 500 atoms. We performed MD
equilibration and sampling using the DL POLY software [29].

For all MD simulations we used a timestep of 1 fs. During each
metadynamics simulation we equilibrated the starting configura-
tion for 20,000 steps (20 ps) with a Berendsen barostat. Then
50,000 steps (50 ps) were used in each run for calculating the
Hessian matrix. For each metadynamics step we run 1000 steps
for equilibration and 1000 steps for gathering statistics, 2 ps total.

We made simulations to search for the phase transition temper-
atures using a system of 13,500 atoms when starting with the fcc
lattice and of 13,718 atoms when starting with the bcc lattice
(the cubic box with approx. the same number of atoms). We per-
formed simulations of 3000 metadynamics steps using a
Gaussian width ds = 4, 18, 20, 30, 35, 50, 70, 80 (GPa A3)1/2 with
the corresponding Gaussian height W ¼ ds2.

The melting curve of Xe was obtained up to 2000 GPa, using the
Z-method [30] and two-phase method [13]. In the Z-method, the
simulations were conducted using 2000 atoms for a pressure range
from 10 to 2000 GPa starting from the fcc lattice. The melting tem-
peratures of bcc and fcc phases were obtained also using the
two-phase method. The initial conditions for this simulation were
prepared in the following way. The ideal lattice with 128,000 atoms
was generated and then melted with a temperature 50% higher than
the melting temperature for a given pressure. Next, the system was
equilibrated with the pressure and temperature close to the melt-
ing conditions calculated by the Z-method. Then, atoms belonging
to a spherical region with radius 27 Å were removed. Instead a
pre-equilibrated solid sphere with radius 25 Å was inserted. A 2 Å
gap was created to guarantee that inserted atoms are not too close
to the liquid atoms (note the non-physical behavior of the
Buckingham potential (Fig. 1) at short distances). The resulting con-
figuration was a supercell containing two phases – a solid sphere
(2975 atoms for bcc and 3043 atoms for fcc) and liquid (124,218
atoms) surrounding it. A relaxation procedure was applied to min-
imize the energy of the system. Then the simulations were con-
ducted using the NVE ensemble starting from a temperature
slightly below the melting line. After the simulation starts, liquid
atoms start to crystallize around the solid sphere. The latent heat
of this atoms is released as a kinetic energy, raising the temperature
in the simulation box (Fig. 2). This process will continue until either
equilibrium between solid and liquid is reached, or all the liquid
solidify. Because of small undercooling and the small size of the ini-
tial solid, both phases (solid and liquid) were always present in the
end of simulation. As was expected, the bcc melting temperature
was higher than that of fcc starting from the pressure�50 GPa, indi-
cating that bcc is more stable at higher pressures near the melting
temperatures.
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