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a b s t r a c t

Material properties at micro- and macro-scales used in micromechanics and continuum mechanics are
random and deterministic and so are the corresponding material responses. We view material properties
and responses in continuum mechanics as approximations of those in micromechanics. Our premise is
that solutions of problems using material properties at various scales must agree in some sense, e.g., con-
tinuum mechanics solutions should match on average micromechanics solutions. Continuum solutions
with this property are said to be consistent. Theoretical arguments and numerical examples are pre-
sented to demonstrate that the continuum solutions may or may not be consistent and may miss essen-
tial features of material response depending on the problem and quantity of interest. The examples
include beams with random stiffness and one- and two-dimensional specimens with random
conductivity.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

At small scale, material properties fluctuate randomly in space
and can be characterized by random functions calibrated to
microstructure images. An example is a Markov random field cali-
brated to measurements of atomic lattice orientations in aluminum
polycrystals [6]. The representative volume element (RVE) and the
assumption that the microstructure random field is ergodic provide
the link between microscale and continuum descriptions. The size of
the RVE is, theoretically, infinite relative to the scale of fluctuation of
microstructure properties which means for a polycrystal specimen
that its size is much larger than that of the constitutive grains.
Material properties at the RVE scale, referred to as bulk, macro-
scopic, global, or effective properties, are deterministic, do not
depend on boundary conditions, and are used to define the constitu-
tive relations at the macroscale, i.e., the scale of continuum mechan-
ics [16] (Chap. 7). Material properties on finite specimens that are
large relative to their constituents, referred to as apparent, are ran-
dom and depend on boundary conditions. These specimens are said
to be of the scale of the statistical volume element (SVE).

There are numerous studies on the upscaling of microstructure
properties to apparent and effective material properties [2,10,12–
15]. They show that averages of apparent properties can be used
to develop bounds on effective properties [12,15,13]. For linear
elasticity problems, these bounds are in the sense of quadratic
forms so that they can only be used to bound global material

responses by, e.g., energy norms of the type considered in [17].
To reduce calculations and capture material properties at small
scale, it has been proposed to use apparent, rather than effective,
material properties for response analysis. The implementation of
this approach for linear elastic problems requires to select the
SVE size for calculating apparent properties, calculate bounds on
effective material properties corresponding to essential and natu-
ral boundary conditions, and solve two finite element problems
for these bounds. The approach had mixed success because two
opposite requirements: small finite elements for numerical accu-
racy and large finite elements such that the bounds on effective
properties based on SVEs of finite element size are not too wide.
An extensive study on this matter can be found in [17].

Our work relates closely to existing studies on the dependence of
material responses on the resolution used to represent microstruc-
ture features. However, we propose a new framework for quantify-
ing differences between material responses at different scales, the
framework provided by the theory of stochastic differential equa-
tions. In this framework, material responses at different scales are
solutions of stochastic/deterministic equations with the same func-
tional form but different coefficients, which depend on the resolu-
tion used to represent material properties. The approach is
beneficial since the theory of stochastic differential equations pro-
vides bounds on differences between solutions of equations with
the same functional form but different coefficients, i.e., the case of
material responses at different scales. The bounds are obtained from
differences between the coefficients of these equations; they are not
based on bounds on effective material properties derived from
apparent material properties, a common approach in the literature.
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Moreover, the bounds can be constructed on various response met-
rics so that they can capture differences between local response fea-
tures, a useful feature since these responses are sensitive to
microstructure features [5]. Also, recent advances on practical meth-
ods for solving stochastic equations, see, e.g., [8,7] (Chaps. 8 and 9),
provide efficient methods for solving complex stochastic problems
of the type encountered in micromechanics.

Let UðxÞ and u0ðxÞ; x 2 D, be micro- and macro-scale material
response fields, where D denotes the domain occupied by a mate-
rial specimen. We assume throughout the paper that the probabil-
ity law of the random field characterizing the microscale material
properties is known and that UðxÞ is the actual response. The
microscale properties are used to infer effective material proper-
ties. The continuum mechanics solution u0ðxÞ is viewed as an
approximation of the microscale solution UðxÞ. If body forces and
end conditions are deterministic, the micro- and macro-scale solu-
tions are random and deterministic functions, so that it is only pos-
sible to compare u0ðxÞ, a deterministic function, with statistics of
UðxÞ, a random function.

Our premise is that material responses based on material prop-
erties at different scales must agree in some sense, e.g., continuum
mechanics solutions should match on average micromechanics
solutions, i.e., u0ðxÞ ¼ E½UðxÞ�; x 2 D, where E½�� denotes the expec-
tation operator. Theoretical arguments and numerical examples
are presented to evaluate the performance of the continuum solu-
tion u0ðxÞ as an approximation of the microscale solution UðxÞ. The
numerical examples include beams with random stiffness and one-
and two-dimensional specimens with random conductivity, and
are used to examine the consistency of the continuum solutions
and quantify differences between continuum and microscale solu-
tions. We focus on the lack of sensitivity of the continuum solution
to some features of the material properties at small scale that affect
significantly the microscale solution, e.g., the spatial correlation of
the random field models for material properties at small scale, the
difference and relationship between apparent and effective proper-
ties, and the inability of continuum solution to capture some rele-
vant features of material response.

The following section presents two simple examples illustrating
that the characterization of some quantities of interest require high
resolution material models rather than bulk properties. Section 3 is
somewhat technical. The first part of this section develops bounds
on the discrepancy between material responses corresponding to
material models with various resolutions and apply them to bound
differences between u0ðxÞ and UðxÞ. The second part of this section
constructs approximate solutions UperbðxÞ for the special case in
which microstructure properties are small random perturbations
about effective material properties and shows that UperbðxÞ is supe-
rior to u0ðxÞ. Section 4 further explores the relationships between
u0ðxÞ and UðxÞ in the context of two examples, a beam with random
stiffness and one- and two-dimensional specimens with random
conductivity. Section 5 summarizes our findings on features and
limitations of the continuum solution as an approximation of the
microscale solution. Concluding remarks are presented in Section 6.

2. Why microscale solutions

Let D0 and D denote the operators defining the equations for
u0ðxÞ and UðxÞ. Since D is a random operator, the microscale solu-
tion is a random field whose probability law is defined by this
operator, source terms, and boundary conditions. Generally, it is
not possible to derive analytically the probability law of UðxÞ.
Statistics of UðxÞ can be inferred from samples of this random field
obtained numerically from samples of the random entries of D by
using existing deterministic solvers. The continuum mechanics
solution u0ðxÞ is a deterministic function that satisfies an equation

defined by D0. The operators D and D0 have the same functional
form but different coefficients, which reflect material properties
at small and large scales.

The following two examples show that continuum solutions
may or may not be consistent depending on the quantities of inter-
est. The first example discusses a rod with random stiffness in ten-
sion. The second examines a parallel systems with random fibers.

Example 1. Consider a rod with length l > 0 and random stiffness
AðxÞ; 0 6 x 6 l, that is stretched at its ends by unit forces.
The rod elongations UðxÞ and u0ðxÞ; 0 6 x 6 l, satisfy the
differential equations D UðxÞ½ � :¼ AðxÞdUðxÞ=dx ¼ 1 and D0 u0ðxÞ½ � :
¼ Aeff du0ðxÞ=dx ¼ 1 with Uð0Þ ¼ u0ð0Þ ¼ 0, and have the expres-
sions UðxÞ ¼

R x
0 dy=AðyÞ ¼

R x
0 BðyÞdy and u0ðxÞ ¼ x=Aeff ; 0 < x < l,

where BðxÞ ¼ 1=AðxÞ and Aeff denotes the effective stiffness.
Suppose BðxÞ is a homogeneous random field and let nc > 0 denote
its correlation distance. If nc � l, the samples of BðxÞ are nearly
invariant along the rod so that UðxÞ ’ x B0 ¼ x=A0, where B0 and A0

denote random variables whose distributions are the marginal
distributions of BðxÞ and AðxÞ, respectively. The other limit, i.e.,
nc � l, corresponds to the case in which the stiffness scale of
fluctuation is much smaller that the rod length. If BðxÞ is also
ergodic, then UðxÞ ’ x E½Bð�Þ� for a sufficiently large x and resem-
bles the functional form of the continuum solution u0ðxÞ ¼ x=Aeff .
The continuum solution is consistent since it matches the expec-
tation of the microscale solution, i.e., u0ðxÞ ¼ E½UðxÞ�
¼
R x

0 E½1=AðyÞ�dy ¼ x E½1=Að�Þ�, provided 1=Aeff ¼ E½1=Að�Þ� ¼ E½Bð�Þ�.
The latter expectation coincides with the Reuss average, i.e., the

limit of the spatial average ð1=lÞ
R l

0 BðxÞdx as l!1 provided the
compliance field is ergodic.

The solid heavy lines and the thin dash lines in Fig. 1 show the
continuum mechanics solution u0ðxÞ and 50 samples of the micro-
scale solution UðxÞ for the homogeneous translation field
BðxÞ ¼ aþ ðb� aÞU GðxÞð Þ; 0 6 x 6 l; l ¼ 1, where GðxÞ is homoge-
neous Gaussian field with mean 0 and variance 1. Samples of
GðxÞ have been generated at discrete spatial coordinates
xi ¼ i Dx; Dx > 0, by the recurrence formula Gi ¼ qG

i� 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
Wi, i P 1, where Gi ¼ GðxiÞ; fWig are independent

standard Gaussian variables Nð0;1Þ; jqj < 1, and G0 � Nð0;1Þ is
independent of fWig. The left and right panels in the figure are
for q ¼ 0:7 and q ¼ 0:99. The samples of UðxÞ resemble the contin-
uum mechanics solution u0ðxÞ for q ¼ 0:99 in agreement with our
previous comments. However, their slopes are random following
approximately the distribution of Bð0Þ, rather than deterministic
and equal to 1=Aeff . The plots show that the continuum mechanics
solutions is consistent, e.g., u0ðlÞ ¼ 5:50 and estimates of E½UðlÞ�
based on 1000 samples of UðxÞ are 5.5045 for q ¼ 0:7 and 5.6220
for q ¼ 0:99. However, the solutions UðxÞ and u0ðxÞ can differ sig-
nificant, e.g., the standard deviations of UðlÞ, which coincides with

the square root of the error E½ðUðlÞ � u0ðlÞÞ2�, are 0.5795 for q ¼ 0:7
and 2.1279 q ¼ 0:99. The distribution of the tip displacement UðlÞ
depends strongly on the relationship between the scale of fluctua-
tion of the compliance field BðxÞ, which is controlled by q and the
rod length l. This random variable is approximately Gaussian for
q 6 0:5 and non-Gaussian for strong correlations, e.g., estimates
of the skewness and kurtosis coefficients of UðlÞ based on 1000
independent samples are �0.1844 and 3.0114 for q ¼ 0:5 and
�0.0703 and 2.0689 for q ¼ 0:99.

These results show that the continuum mechanics solution with
Aeff ¼ 1=E½1=AðxÞ� is consistent. However, it provides no informa-
tion on the variability of UðxÞ about u0ðxÞ, which depends in a com-
plex manner on the spatial correlation of the stiffness random field.
The continuum solution cannot be used to, e.g., design rods with
imposed limits on their elongations.
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