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a b s t r a c t

A recently developed two-mode phase-field crystal (PFC) model (Wu et al., 2010; Asadi and Asle Zaeem,
2015) is applied for quantitative modeling of body centered cubic (BCC) crystals at their melting points.
This model incorporates the first two density wave vectors of BCC crystals in its formulation and consists
of three model parameters (two independent and one dependent) in its dimensionless form. A systematic
study is presented to show that the two independent parameters of the model control the material prop-
erties such as solid and liquid densities and the structure factor. An iterative procedure is presented to
determine the PFC model parameters for specific BCC materials using their liquid structure factor and
the fluctuation amplitude of atoms in their crystalline state. As a case study, the two-mode PFC model
parameters are determined for Fe at its melting point. The calculated model parameters and results of
the PFC model are validated by comparing the calculated expansion in melting, solid and liquid densities,
elastic constants, and bulk modulus of Fe with the available experimental and computational data in the
literature. In addition, to show the potential application of this PFC model, the solid–liquid interface free
energy and surface anisotropy of Fe are determined and compared with their available counterparts in
the literature.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Phase-field crystal (PFC) model has drawn a great attention
among materials scientists for the past couple of years [1–5]. The
fascinating unique characteristic of PFC models is that it provides
atomistic scale details acting on diffusive time scales by resolving
the crystal density field; thus, elasticity, plasticity, vacancies, grain
boundaries, and two-phase interfaces are naturally incorporated in
PFC models. The free energy of the original PFC model is [1]

F ¼
Z

V

1
2

/ðrÞ aþ kðq2
0 þr2Þ2

h i
/ðrÞ þ g

4
/ðrÞ4

� �
dr; ð1Þ

where a; k; q0 and g are parameters and /ðrÞ is a function related
to the density field which is constant in the liquid state and a per-
iodic function in the crystalline state. The above-mentioned PFC
model is also called one-mode PFC, because it damps the dynamics
of the system except near the first density wave length. Examples of
different applications of PFC models include simulating solidi-
fication [6], elastic deformation [7], spinodal decomposition [8],
grain-boundary premelting [9], dislocation dynamics [10],

Kirkendall effect [11], structural phase transformation [12,13], and
stacking faults [14]. PFC models can be also used in quantitative
modeling of materials if its model parameters are determined for
the material of interest at a given temperature; e.g. the parameters
a; k; q0 and g for the one-mode PFC model. This quantitative mod-
eling of materials using PFC models has been only explored for
modeling of BCC (Fe) [15–18] and FCC (Ni) [19,20] metals at their
melting points and their coexistence with the liquid state. For FCC
crystals, Wu et al. [19] developed a two-mode PFC model and pre-
sented a method to determine its model parameters based on the
liquid structure factor and solid density amplitude fluctuation.
These quantitative studies used PFC models to simulate solid–liquid
and grain growth microstructures, and to calculate properties such
as solid–liquid interface free energy, and grain boundary free
energy in reasonable agreement with the experimental data.
These PFC models need additional improvements to better calculate
some other properties such as expansion in melting and elastic con-
stants, which will be explained in details in the next paragraphs.
This article aims to improve quantitative modeling of BCC metals
at their melting points; therefore, we will focus on quantitative
PFC modeling of BCC metals hereafter.

The three main factors affecting the quantitative modeling of
materials (including PFC models) are: I. the model formulations,
II. the method used to determine model parameters, and III. the
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input material properties obtained from other methods, such as
molecular dynamics (MD) or experiments for the case of PFC mod-
eling for instance. The method to determine one-mode PFC model
parameters (a; k; q0 and gÞ was proposed for the first time by Wu
and Karma [15]. They followed Ginzburg–Landau theory and a
multi-scale analysis to propose relations to determine the PFC
parameters suitable for modeling BCC metals near their melting
points and their coexistence with the liquid state. Wu and cowork-
ers provided relations between the parameters a; k and q0 and the
liquid structure factor of the element at its melting point. The
fluctuation amplitude of the atoms in the solid state were used to
obtain the parameter g. These input material properties were deter-
mined for Fe form MD simulations performed by Sun et al. [21]
using embedded atom method (EAM) [22,23]. The resulted
quantitative PFC model calculated the solid–liquid interface free
energy and surface anisotropy in reasonable agreement with MD
results and experiments. The method to determine the one-mode
PFC model parameters using the same input material properties
was updated by Jaatinen et al. [16]. They used the common tangent
line between solid and liquid densities and marginally improved the
solid–liquid interface free energy calculations. Jaatinen and
coworkers also calculated the grain boundary free energy of Fe near
its melting point which was also in reasonable agreement with
experiments. Recently, Asadi et al. [18] used a systematic procedure
to model solid–liquid coexistence of Fe using one-mode PFC model.
They modified the parameters of the modified-embedded atom
method (MEAM) interatomic potentials of Fe in the concept of MD
simulations [24] to make them suitable for modeling solid–liquid
coexistence problems; they performed MD simulations at the melt-
ing point to provide input material properties for the PFC model
using an iterative procedure. This one-mode PFC modeling resulted
in improved calculations of solid–liquid interface free energy,
expansion in melting, and grain boundary free energy for Fe.

Regardless of the utilized model parameter determination
method, the one-mode PFC model is unable to calculate expansion
in melting and elastic constants in agreement with experiments.
The one-mode PFC model predicts the expansion in melting signifi-
cantly higher than the experiments (three to four times higher)
because the value of the liquid structure factor at zero cannot be
included in the parameter determination procedure [16]. Jaatinen
et al. [16] introduced an eight-order fitting PFC (EOF-PFC) model
that predicts the expansion in melting of Fe in agreement with
the experiment. EOF-PFC uses an additional PFC model parameter
in order to include the value of liquid structure factor at zero in
the fitting procedure. Nevertheless, the available PFC models for
BCC metals under predict the elastic constants and result in zero
tetragonal shear modulus [19] (C0 ¼ ðC11 � C12Þ=2 ¼ 0 because
C11 ¼ C12 ¼ C44 in available PFC models for BCC crystals).

In this article, we utilize a two-mode PFC model which is suit-
able for modeling BCC metals at their melting points. This model
incorporates the first two density wave vectors in its formulation
and damps out the dynamics of the system except near the first
two density wave lengths, q0 and q1; the Helmholtz free energy
of this two-mode PFC model is [19,25]
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where a; k; q0; r0; q1; r1 and g are parameters to be determined
for the specific material.

In Section 2, the dimensionless form of the model is reviewed
(Eq. (4a)) in order to study the properties of the model thoroughly.
The dimensionless form of the model has two adjustable model
parameters (e and R1Þ and a dependent model parameter (R0Þ.
First, we systematically investigate the influence of varying e and
R1 on dimensionless properties such as solid and liquid densities
and density wave amplitudes which shows that the model has

the capability to control these properties. Then, the relations to
determine the elastic constants in the present model are
derived which results in non-zero tetragonal shear modulus
(C0 ¼ ðC11 � C12Þ=2 – 0 because C11 – C12 ¼ C44Þ unlike the one-
mode PFC model. In addition, an iterative method to determine
the present PFC model parameters for BCC metals are presented.

In Section 3, the two-mode PFC model is used to quantitatively
investigate the solid and liquid properties of Fe at its melting point.
The model parameters of the present PFC model for Fe are deter-
mined. Expansion in melting, solid and liquid densities, elastic con-
stants, and bulk modulus of Fe at its melting point are calculated
and compared to their experimental counterparts to validate the
results. The solid–liquid interface free energy and surface aniso-
tropy of Fe are also determined and compared with the results of
one-mode PFC models and their MD counterparts from the
literature.

2. Two-mode phase-field crystal model

2.1. Basic equations

The standard time-evolution equation for conserved phase
fields is valid for PFC models:

@/ðrÞ
@t
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where M is the mobility constant and F is the two-mode PFC free
energy in Eq. (2). It is convenient to use the dimensionless form
of the PFC model in analytical and computational procedures
because it has less number of parameters to deal with. The
dimensionless form of Eqs. (2) and (3) are
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0. In Eq. (4a), e is a small
positive parameter, R1 is the second parameter which can be posi-
tive or negative, and R0 is a parameter which will be determined
as a function of R1 and e. The first and second density wavelengths
(q0 and q1Þ for BCC crystals are related to [110] and [200] density
wave vectors, respectively; thus, Q1 ¼

ffiffiffi
2
p

. The corresponding
dimensionless density field for BCC crystal is:

w ¼ ws þ 4Asðcos qx cos qyþ cos qx cos qzþ cos qy cos qzÞ
þ 2Bsðcos 2qxþ cos 2qyþ cos 2qzÞ; ð5Þ

where ws is the average dimensionless density at solid, As and Bs are
the density amplitudes for [110] and [200] density wave vectors,
respectively, and q ¼ 1=

ffiffiffi
2
p

. It is worth mentioning that we have
chosen the second density wave vector in our formulation to be
[200], because it is the closest one to [110] wave vector. The choice
of a farther second density wave vector is also possible, which
results in a smaller periodic length for the density field (Eq. (5)).
This means that the resulted model needs to use smaller mesh sizes
for convergence of the results. The free energy density in the solid
state is obtained by substituting Eq. (5) into Eq. (4a), integrating
over a lattice cell, and dividing the resultant by the lattice volume as
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