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a b s t r a c t

In this work, we present a modified two-mode phase-field crystal (PFC) model for nano-structural evo-
lution of materials. The model is used to study both the face-centered cubic (FCC) and body-centered
cubic (BCC) orderings, as well as the solid–liquid coexisting phenomenon. This two-mode PFC model
incorporates three parameters in its formulation and damps out the dynamics of the system, except near
the first two critical wavelengths. The material properties such as volume expansion and free energy
change in melting, crystalline structure, solid density wave amplitudes, and elastic constants can be
determined by this PFC model.

� 2015 Elsevier B.V. All rights reserved.

Phase-field crystal (PFC) is an atomistic model acting on
diffusive time scales [1,2], which naturally incorporates different
physical phenomena such as elasticity, two-phase interfaces,
vacancies, and grain boundaries in its formulation [3–6]. Thus,
PFC is of great interest in studying structures and properties of
metallic materials. The original PFC model was a reformulation of
the conserved version of the Swift–Hohenberg (SH) equation for
thermal fluctuations in Rayleigh–Benard convection problem
[7,8]. The free energy of the original PFC model is [1,7]
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where wð~r; tÞ is the dimensionless density field,~r is the position vec-
tor, t is the time, and e is a model parameter. In the concept of den-
sity functional theory (DFT), the density of the crystalline state can

be expressed in terms of the reciprocal lattice vectors (RLVs), ~k, by

w ¼ ws þ
X
~k

A~kei~k�~r: ð2Þ

In Eq. (2), ws is the average density in the solid state, and A~k is the
Fourier amplitudes of the related RLVs. The PFC free energy in Eq. (1)
only uses the first set of RLVs (one-mode PFC model). Therefore, it
can represent (by only minimizing the free energy) principal RLVs
with closed triangle forms, which are hexagonal and BCC structures
in two-dimensional (2D) and three-dimensional (3D) spaces, respec-
tively [9]. The one-mode PFC model is already applied to study

different phenomena in materials science, including solidification
[10], elastic deformation [11], spinoidal decomposition [12], grain
boundary premelting [13], dislocation dynamics [14], and
Kirkendall effect [15]. Furthermore, it was shown that the one-mode
PFC model can be used to quantitatively simulate the two-phase
solid–liquid coexistence of Fe [16–18] by determining its model
parameters from molecular dynamics (MD) simulations. For most
of the above mentioned applications of the one-mode PFC model,
the crystalline state is hexagonal in 2D and BCC in 3D.

Theoretically, it is possible to stabilize other lattice orderings by
including more RLVs in Eqs. (1) and (2). Wu et al. [9] presented a
two-mode PFC model by modifying the two-frequency SH equa-
tion, which was introduced by Lifshitz and Petrich [19]. Their
two-mode PFC model uses first two sets of RLVs and shows square
and FCC orderings in 2D and 3D, respectively. Wu et al. [9] also pre-
sented a method to determine the two-mode PFC model parame-
ters for Ni from the results of MD simulations. The capability of
their model in quantitative calculations of the two-phase solid–
liquid coexistence properties, such as interface free energy and
expansion in melting, is yet to be known. A PFC model for BCC-
liquid coexistence was presented by Jaatinen et al. [20] which is
of eight-order in spatial derivatives (EOF-PFC). The EOF-PFC model
was also used to quantitatively study the solid–liquid coexistence
of Fe [20] and it was used to study 2D crystallization as well [21].
Greenwood et al. [22–24] developed a class of two-mode PFC
models which are also suitable to model structural phase transfor-
mations in metals by using Gaussian distribution function to
approximate the solid density waves. Recently, Mkhonta et al.
[25] presented a multimode PFC model in 2D, which was inspired
by the work of Wu and coworkers. They argued that including first
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three sets of RLVs (three-mode PFC) in the PFC model is sufficient
to form all the five Bravias lattices and many non-Bravias struc-
tures such as honeycomb and kagome phases.

In this work, we present a modified two-mode PFC model that
shows both FCC and BCC orderings in 3D, as well as their coexis-
tence with the liquid state. The present PFC model includes first
two RLVs in Eqs. (1) and (2), but it (similar to the model of Wu
et al. [9]) has three parameters that can be used to adjust the rel-
ative solid–liquid free energies and densities, as well as the relative
Fourier amplitudes of the first two RLVs. We also present the phase
diagrams for the FCC-liquid and BCC-liquid coexistence as func-
tions of these model parameters.

For FCC and BCC lattices, the first principal RLV is related to

[111] and [110] density wave vectors (~k111 and~k110Þ, respectively.
Although in theory there is freedom in the selection of the second
density wave vector, it is more advantageous computationally to
choose the second wavelength as close as possible to the first
wavelength. Thus, we choose the second RLV for both FCC and

BCC crystals to be [200] density wave vector (~k200Þ. We propose
the following Helmholtz free energy for the two-mode PFC model

F ¼
Z
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w
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where e is an adjustable small positive parameter, R1 is the second
adjustable small parameter which can be positive or negative, and R0

is a parameter which will be determined as a function of R1 and the
Fourier amplitudes of the RLVs. In Eq. (3), Q1 is the ratio of the second
wavelength to the first wavelength for the considered lattice structure;

i.e., Q1 ¼j~k200 j = j~k111 j¼
ffiffiffiffiffiffiffiffi
4=3

p
for FCC, and Q1 ¼j~k200 j = j~k110 j¼

ffiffiffi
2
p

for BCC. This two-mode PFC model maybe used for other type of lattice
structures in 3D, such as HCP and diamond, and in 2D, such as square
lattices. Exploring the capability of this two-mode PFC model for sim-
ulating other lattice structures requires further study of this model,
which will be presented in the future works.

In order to explore the capabilities of the two-mode PFC in
modeling solid-liquid equilibrium, the free energy for the liquid
and crystalline states must be calculated in terms of the model
parameters: e;R1 and R0. Thus, we first present the relations for
the density field in the crystalline states. We denote the Fourier
amplitudes of the first and second RLVs by Ai and Bi, respectively.
Assuming the same amplitudes for all the density waves in the
solid state (j Ai j¼ As and j Bi j¼ BsÞ, the density field in the solid
state for FCC and BCC crystals, following Eq. (2), become

wfcc ¼ ws þ 8As cos qx cos qy cos qzþ 2Bsðcos 2qxþ cos 2qy

þ cos 2qzÞ; ð4aÞ

wbcc ¼ ws þ 4Asðcos qx cos qyþ cos qx cos qz

þ cos qy cos qzÞ þ 2Bsðcos 2qxþ cos 2qyþ cos 2qzÞ; ð4bÞ

where q ¼ 1=
ffiffiffi
3
p

for FCC and q ¼ 1=
ffiffiffi
2
p

for BCC. The free energy den-
sity in the solid state, f fcc or f bcc , is obtained by substituting Eq. (4)
into Eq. (3), integrating over a lattice cell, and diving the resultants
by the volume of the lattice cell:
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By minimizing the above free energy densities with respect to q,

we obtain R0 ¼ R1ðB2
s =A2

s Þ. It is worth mentioning that the present
two-mode PFC model recovers the two-mode PFC model of Wu
et al. [9] if R0 ¼ 0. However, if R0 ¼ 0, the total free energy is not min-
imized with respect to q, unless R1 ¼ 0; i.e., dffcc=dqjq¼1=

ffiffi
3
p ¼

16B2
s R1=

ffiffiffi
3
p

and dfbcc=dqjq¼1=2 ¼ 48B2
s R1=

ffiffiffi
2
p

. As it might be clear, this
error in minimization of the total free energy increases as R1 or Bs

increases. Therefore, inclusion of R0 in two-mode PFC models is
necessary to avoid error in the minimization of the free energy in
the crystalline state. In addition, by substitution of R1 ¼ 0 in
Eq. (3), the present two-mode PFC model becomes the two-
frequency SH model introduced by Lifshitz and Petrich [19]. In
later stages of this paper, it will be shown that the inclusion of
R1 in the formulation gives the freedom to vary properties such
as expansion and free energy changes in melting, as well as the
relative amplitudes of the RLVs.

Further minimization of f fcc and f bcc with respect to As and Bs

results in relations for determining the density amplitudes of FCC
and BCC crystals in terms of ws;R1 and e; these relations are not
presented here for brevity.

The free energy density in the liquid phase, f l, is obtained by
substituting the constant liquid density, wl, in Eq. (3), integrating
over a lattice cell, and diving the resultant by the volume of the
lattice cell:

f l ¼ � e� ð1þ R0ÞðQ 4
1 þ R1Þ

h iw2
l

2
þ w4

l

4
: ð6Þ

The only unknowns left in the model are the coexistence aver-
age densities, wl and ws, which are related to e and R1, and can be
obtained by the construction of the standard common tangent line
for solid and liquid free energies in Eqs. (5) and (6). This task is
done numerically.

The phase diagrams of FCC-liquid and BCC-liquid coexistence
for different R1 parameters are plotted in Fig. 1(a) and (b), respec-
tively. To show the effect of R1 parameter on the phase diagrams,
three different values are chosen for the R1 parameter; R1 is either
zero, a positive value or a negative value. Change in R1 has a stron-
ger effect on the phase diagram of BCC-liquid coexistence, espe-
cially for a negative value of R1. Thus, the phase diagrams are
presented for the choices of R1 ¼ �0:01 and R1 ¼ �0:1 for BCC
and FCC crystals, respectively. Theoretically, the parameter R1

can be increased to big positive or negative values. However, as
R1 increases to a big positive (negative) value, the effect of the sec-
ond wave vector decreases (increases) severely, such that the
Fourier amplitude of the second (first) wave vector, BsðAsÞ, van-
ishes. For a typical FCC or BCC crystal, Bs=As is a positive number
less than one; so the choice of R1 in the model is practically limited
to small values in order to represent real FCC and BCC crystals, and
to avoid computational deficiency in the model (by introducing
zero As or BsÞ.

The values of expansion in melting, Dw ¼ wl � ws, for e ¼ 0:042
are also shown in Fig. 1. It is interesting to note that increasing
R1 parameter from zero to positive values shifts the coexisting lines
toward smaller densities and decreases the expansion in melting,
and decreasing R1 parameter from zero to negative values has
reverse effects. To clearly illustrate the coexistence of solid and liq-
uid in the presented two-mode PFC model, the free energy
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