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a b s t r a c t

The macroscopic behavior of polycrystalline materials is largely influenced by the shape, the arrangement
and the orientation of crystallites. Different methods have thus been developed to determine the effective
behavior of such materials as a function of their microstructural features. In this work, which focuses on
polycrystalline materials with an elastic–viscoplastic behavior, the self-consistent, finite element and
spectral methods are compared. These common methods are used to determine the effective behavior
of different 316L polycrystalline aggregates subjected to various loading conditions. Though no major dif-
ference is observed at the macroscopic scale, the hardening rate is found to be slightly overestimated
with the finite element method. Indeed, spatial convergence cannot be guaranteed for finite element
calculations, even when fine mesh resolutions, for which the computational cost is important, are used.
Also, as the self-consistent method does not explicitly account for neighborhood effects, important dis-
crepancies between the self-consistent method and the other methods exist regarding the mechanical
response of a specific grain. The self-consistent method nevertheless provides a reasonable description
of the average response obtained for a group of grains with identical features (e.g. shape, orientation).

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The behavior of engineering materials is sometimes better
described by accounting for the heterogeneous aspect of the strain
and stress fields which develop during a deformation process. For
the specific case of polycrystalline materials, the main reason for
the fluctuations of the strain and stress fields is the anisotropy of
single crystal elastic and plastic properties. These fluctuations,
which may significantly impact the effective behavior of a poly-
crystalline aggregate, depend on the properties, the shape, the
arrangement and the orientation of the different crystallites.
Different methods have thus been developed to account for the
polycrystalline nature of such materials when determining the
effective properties.

Historically speaking, the first propositions were made by
Hershey [1] and Kröner [2] who developed the self-consistent
scheme to estimate the effective properties of heterogeneous
materials. Since the initial propositions of Hershey [1] and
Kröner [2] are restricted to constitutive models with a linear form
(e.g. linear elasticity, newtonian viscosity), different extensions
have been proposed to deal with heterogeneous materials with

non-linear constitutive relations. For instance, the developments
made by Kröner [3] and Hill [4] allow for modeling the behavior
of heterogeneous materials for which the constitutive relation
includes both elasticity and rate-independent plasticity.
Neglecting elastic contributions, Hutchinson [5], Molinari et al.
[6] and Lebensohn and Tomé [7] adapted the self-consistent model
to the case of heterogeneous solids with a viscoplastic behavior.
When dealing with elastic–viscoplastic constitutive relations, addi-
tional difficulties exist because constitutive relations involve dif-
ferent orders of time derivation. Indeed, complex space–time
couplings, described by Suquet [8] as the long-memory effect, are
involved and the local and macroscopic constitutive models do
not have the same structure anymore. To overcome these difficul-
ties, many approaches have been proposed. They fall into two dif-
ferent categories. On the one hand, hereditary models use Laplace–
Carson transforms to define a single viscoelastic modulus in the
Laplace–Carson space [9–12]. The self-consistent problem can then
be solved in the Laplace–Carson space before proceeding to the
inversion of the solution to the real time space. On the other hand,
interval variable models are entirely formulated in the real-time
space [13–20]. They are based on a set of internal variables whose
introduction allows accounting for the interactions associated with
the space–time couplings.
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The finite element method [21–23] is commonly used for the
resolution of mechanical engineering problems. As shown by the
pioneering work of Miyamoto et al. [24], the finite element method
is a convenient way of investigating the local behavior of crys-
talline materials. Indeed, in contrast with the self-consistent
method, the finite element method aims at providing stress and
strain fields for which compatibility and static equilibrium condi-
tions are locally fulfilled. The finite element method thus allows
for capturing the intragranular fluctuations of the stress and strain
fields. As a result, thanks to the development of computing
capabilities, there has been a growing interest for the numerical
simulation of polycrystalline aggregates with the finite element
method [25–32].

The spectral method proposed by Moulinec and Suquet [33] is an
alternative solution for the modeling of heterogeneous materials. It
makes an intensive use of the Fast Fourier Transform algorithm to
solve the integral equation associated with the heterogeneous
problem. Though the initial applications of Moulinec and Suquet
[33] were focused on composite materials, different extensions
have been developed in the context of crystal plasticity [34–37].
In contrast with the finite element method, the periodicity of both
the microstructure and the boundary conditions is a necessary con-
dition for the application of the spectral method.

Because of their design, the self-consistent, finite element and
spectral methods are based on different assumptions. As a result,
the choice of an appropriate method for a given problem requires
being aware of how these assumptions may influence the estimate
of effective properties. The present work thus aims at comparing
these methods in the context of the determination of the effective
properties of polycrystalline aggregates with an elastic–viscoplas-
tic behavior. The paper is structured as follows. In the first part,
the equations associated with the heterogeneous problem are pre-
sented and the different methods are briefly described. In the sec-
ond part, some applications are proposed and the results
determined with the different methods are compared. The results
are obtained for 316L polycrystalline aggregates subjected to dif-
ferent loading conditions: uniaxial tension, cyclic tension–com-
pression and some multiaxial loading paths allowing for the
determination of yield surfaces.

2. Model description

2.1. Field equations

In this work, a volume element V with boundary @V , which is
representative of a polycrystalline material, is considered. The vol-
ume element consists of many subdomains with homogeneous
properties (i.e. crystallites) being perfectly bonded across their
interfaces. The effective properties are determined from the
macroscopic stress and strain tensors (denoted by R and E) which
are related to the local stress and strain fields (denoted by r and e)
through the classical averaging relations of homogenization
theory1:

R tð Þ ¼ 1
V

Z
V
r x; tð ÞdV ¼ hr tð ÞiV ð1Þ

E tð Þ ¼ 1
V

Z
V
e x; tð ÞdV ¼ he tð ÞiV ð2Þ

Within the infinitesimal strain framework, kinematical compatibil-
ity relations are given at any point x and any time t by:

e x; tð Þ ¼ sym u tð Þ � rxð Þ ð3Þ

_e x; tð Þ ¼ sym _u tð Þ � rxð Þ ð4Þ

where u is the displacement field. Also, when no volume forces are
present, the stress field r should satisfy the static equilibrium
conditions:

rx � r tð Þ ¼ 0 ð5Þ

rx � _r tð Þ ¼ 0 ð6Þ

Assuming an elastic–viscoplastic behavior, the local strain and
strain rate fields are decomposed into elastic (subscript e) and vis-
coplastic (subscript p) contributions:

e x; tð Þ ¼ ee x; tð Þ þ ep x; tð Þ ð7Þ

_e x; tð Þ ¼ _ee x; tð Þ þ _ep x; tð Þ ð8Þ

Within a rate-dependent framework, the viscoplastic strain rate _ep

is a non-linear function f of the stress tensor r and some internal
variables vk whose detail does not need to be known at this stage:

_ep x; tð Þ ¼ f r;vkð Þ ð9Þ

The introduction of the elastic stiffness tensor c allows for connect-
ing the stress and stress rate tensors to the strain and strain rate
tensors:

r x; tð Þ ¼ c xð Þ : e x; tð Þ � ep x; tð Þ
� �

ð10Þ

_r x; tð Þ ¼ c xð Þ : _e x; tð Þ � _ep x; tð Þ
� �

ð11Þ

In order to close the above problem, which consists of Eqs. (3)–(11),
the boundary conditions have to be specified. The boundary condi-
tions prescribed on @V should reflect as better as possible the in situ
state of the representative volume element. However, in most cases,
only partial information regarding the exact in situ state is avail-
able. Therefore, depending on the method, different strategies have
been adopted to circumvent this difficulty.

In the general case, no analytical solution exists for the hetero-
geneous problem which is uniquely defined from field equations
and boundary conditions. Consequently, different methods, which
are briefly described in the following sections, have been devel-
oped to obtain numerical solutions to this problem. These methods
aim at finding the stress and strain fields (or equivalently the stress
rate and strain rate fields) satisfying both compatibility, equilib-
rium and boundary conditions.

In the following, unless otherwise specified, the dependence
with time t and position x will be omitted.

2.2. Finite element method

The finite element method aims at finding approximate solu-
tions to boundary value problems such as the heterogeneous prob-
lem described earlier. The first step consists of writing the
heterogeneous problem in its weak form. The weak formulation
is obtained by introducing a virtual displacement field v which
allows for transforming Eq. (5) into:Z

V
rx � rð Þ � vdV ¼ 0 ð12Þ

Integrating by parts the above relation and using the divergence
theorem leads to the weak formulation of the heterogeneous
problem:Z

V
r : �dV �

Z
@V

r � nð Þ � vdS ¼ 0 ¼ R uð Þ ð13Þ
1 These relations hold if and only if the volume element is submitted to

homogeneous boundary conditions or periodic boundary conditions. Only these
specific (but rather common) situations are considered in the present work.
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