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a b s t r a c t

A theoretical model for the phonon–phonon scattering rates of carbon nanotubes (CNTs) is developed
using the carbon specific Brenner’s potential. This model allows for the calculation of mode specific pho-
non–phonon scattering rates, via direct computation of the three-phonon strength of interaction. This
direct calculation provides further accuracy to the previously existing model, which relied on continuum
mechanics approximations to the strength of interactions. The contributions of each phonon branch to
the total phonon–phonon scattering rates are analyzed. The results for longitudinal optical and longitu-
dinal acoustic phonons of a (10, 10) CNT suggest very different behavior for each vibrational mode. While
the results presented are specific to the (10, 10) metallic CNTs, the method is directly applicable to CNTs
of other chiralities.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

It is very difficult to obtain Carbon Nano Tube (CNT) material
properties for specific chiralities experimentally,as a result
computational modeling has been extensively used to obtain ther-
mal, mechanical, electrical properties [1–13]. In order to model and
compute electrical conductivity and Joule heating, it is necessary to
calculate electron–phonon scattering rates in a CNT, using models
proposed in the literature [2–5,14,15].

For metallic CNTs under electrical loading, the continued scat-
tering between electrons and phonons results in a non-equilibrium
phonon distribution associated with the creation of hot phonons.
The effects of hot phonons on Joule heating [16] and wind forces
[17] have been reported. If these hot phonons are not allowed to
relax back toward the equilibrium phonon distribution, the cre-
ation of phonons in electron–phonon scattering process may result
in a net accumulation of hot phonons. To avoid such pile-ups of
phonons during the simulation of CNTs, it is important to under-
stand and calculate the strength of interactions between all
phonons.

Several groups have studied phonon–phonon scattering rates
either experimentally [18,19] or theoretically [20–24]. Raman scat-
tering experimental results presented in Refs. [18,19] report a
decay rate of optical phonons at 300 K of 1 ps and 1.1 ps

respectively. In Ref. [20] Pennington and his group make use of
the phonon Boltzmann transport equation to calculate the optical
phonon relaxation times for various CNTs. The results presented
in Ref. [20] vary from 0.2 to 10.2 ps at 300 K depending on the chi-
rality of the CNT. While experimental and theoretical results seem
to agree on the magnitude of the phonon–phonon scattering rates,
they may not necessarily reflect the true behavior of each individ-
ual phonon–phonon interactions because of the averaging process
used. The Raman scattering results presented in Ref. [18] are for
very specific frequencies and do not show the full frequency spec-
trum that phonons can span. Moreover, most theoretical models
for phonon–phonon scattering rates calculate constant scattering
rates for all phonons. However, during three phonon processes,
there is no physical reason why the scattering rates should be con-
stant for all phonon–phonon scattering mechanisms. The use of
constant rates is a very rough approximation, which can be
improved by analyzing the full phonon bands. According to the
ab initio study of thermal transport properties, Broido et al. [23]
reported that the three-phonon scattering is the dominant phonon
scattering mechanisms around room temperature. In Ref. [21],
Hepplestone and Srivastava derived a formalism to calculate pho-
non specific scattering rates based on the anharmonic part of a
generalized three dimensional lattice potential. The authors of
Ref. [21] were able to show that phonon–phonon scattering rates
have large variations for different phonon wavevector values.
Their approach relied on the calculation of anharmonic scattering
rates making use of a continuum mechanics approach to obtain
the constant used in the strength of interaction formalism.
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In this study, improved accuracy is provided for the model pro-
posed in Ref. [21] by using the carbon specific Brenner’s potential
[25] to directly compute the strength of interaction between speci-
fic phonons and determine the phonon–phonon scattering rates in
a (10,10) CNT without the need for continuum mechanics assump-
tions and approximations of the strength of interaction.

2. Methodology

The analytical formula for the phonon–phonon scattering rates
is derived from the interatomic bonding potential m. Performing a
Taylor expansion of the potential, the harmonic and anharmonic
parts of the potential can be extracted.
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In Eq. (1), m0 is the constant part of the potential, and uðlbÞ is the dis-
placement of an atom from its equilibrium position in a unit cell of
the lattice. The vector l represents the location of the unit cell
within the lattice, while the vector b points to the position of a given
atom within the unit cell. a, b, and c represent the summation over
the x, y, and z coordinates. The third order term of the Taylor expan-
sion is responsible for the anharmonic behavior of the potential, and
it represents the strength of interaction in three phonons processes
shown on Fig. 1.

From Eq. (1), we define the third rank tensor, W, as the third
derivative of the potential with respect to the displacements
around the atomistic equilibrium positions.
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The details of the calculation of this tensor are presented in
Section 3. Following Srivastavas approach, [26] the anharmonic
bonding potential is given as,
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where N0X is the volume of the lattice, mc is the mass of one carbon
atom, xðqsÞ is the frequency of a phonon with wavevector q and
polarization s; G is a reciprocal lattice vector, eaðb j qsÞ, ebðb0 j q0s0Þ,
and ecðb00 j q00s00Þ are the direction of the polarization vectors,
Wabcðqb; q0b0; q00b00Þ is the Fourier transform of the third rank tensor
presented in Eq. (2), finally, ay and a represent the phonon creation
and annihilation operators respectively. This anharmonic potential
is then used to calculate the transition probabilities of three phonon
processes. Before the final formula for the phonon–phonon scatter-
ing rates is derived, it is important to discuss the nature of three
phonons processes. These processes can be divided into two classes.
Class I represents the annihilation of two phonons and the creation
of a third one, while class II represents the annihilation of one pho-
non and the creation of two phonons as shown on Fig. 1. Phonon–
phonon scattering must satisfy the conservation of energy and
momentum laws, which can be written as the following selection
rules presented in Table 1.

The transition probability between an initial state j ii and a final
statej f i is given by Fermi’s golden rule,

P ¼ 2p
�h
jhf jm3jiij2q; ð4Þ

where q is the density of final states. Using the following initial and
final states for class I and class II processes respectively,

jiI;IIi ¼ jnqs;nq0s0 ;nq00s00 i
jf Ii ¼ jnqs � 1;nq0s0 � 1;nq00s00 þ 1i
jf IIi ¼ jnqs � 1;nq0s0 þ 1;nq00s00 þ 1i

ð5Þ

where n is the phonon occupation number, we can obtain the final
formulation for the transition probabilities as follows,

PI ¼
p�h2U2nqsnq0s0 ðnq00s00 þ 1ÞqdG;qþq0�q00
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and

PII ¼
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where U is the projection of the third rank tensor described in Eq.
(2) along the directions of the polarization vectors.

It maybe expected that there should be a symmetry between
the scattering rates of the two types of three phonon processes.
However, we should remember that phonons are just quasi-parti-
cles, quantizations of the lattice vibration. Depending on the mag-
nitude of vibration, the number of phonons in each mode is
different. Therefore, the scattering rates of class I and class II are
different, as indicated by nqsnq0s0 ðnq00s00 þ 1Þ in Eq. (6) and by
nqsðnq0s0 þ 1Þðnq00s00 þ 1Þ in Eq. (7). Therefore, there is no symmetry
between the scattering rates of class I and class II.

Making use of the relaxation time approximation, we can write
the scattering rate of a phonon (qs) as,
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where the factor of one half is used to avoid double counting the
class II events.

Fig. 1. Three phonon processes with interaction strength W.

Table 1
Class I and class II selection rules.

Class I Class II

q + q0 � q00=G q � q0 � q00 = G
E(q) + E(q0) = E(q00) E(q) = E(q0) + E(q00)
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