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a b s t r a c t

A variational, phase-field methodology describing the segregation of dopant cations to the free surfaces of
mixed conducting perovskite oxides is introduced. Based on the Cahn–Hilliard formalism for solute seg-
regation in alloys and the Cahn theory of wetting of a solution at a solid surface, the model qualitatively
predicts the experimentally observed behavior of solute segregation in oxides, which shows segregation
layers on the order of tens of nanometers. Critical in this description are the interactions among defects
and the gradient energy – two related concepts that can be expected to become influential at relatively
high dopant concentrations. The analysis predicts that a first-order phase transition – a surface-mediated
spinodal – may occur depending on the strength of dopant interactions and the affinity of dopant cations
and oxygen vacancies for the free surface.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Mixed ionic–electronic conductors (MIECs) have found utility as
electrode materials in solid oxide fuel cells, because they are capa-
ble of acting as both catalyst and transport medium for oxygen
reduction and movement of oxygen ions towards the electrolyte.
But the electrode behavior of these materials is complex, and they
have proven to be fickle subjects for study: even chemically
identical materials can exhibit vastly different electrochemical
behaviors [1–4]. It is now widely accepted that dopant cation
segregation at the gas-exposed surfaces of MIECs plays an impor-
tant role in this phenomenon [5–12]. Due to the slow diffusion of
cations even at elevated temperatures, different processing histo-
ries can lead to different electrochemical behaviors for the same
bulk composition.

However, a holistic, quantitative thermodynamic framework for
the segregation of cations at MIEC surfaces has not yet been
established. Conventional space-charge calculations of the Gouy–
Chapman or Mott–Schottky variety – that have been widely
successful in relatively dilute systems [13–16] – cannot explain
segregation layers on the order of 10 nm [10,11] in a highly-doped
material where the Debye length is less than an angstrom. It is thus
clear that the thermodynamics of dilute systems will not suffice
and a framework pertaining to systems with high concentrations
of solute must take its place.

Fortunately, such a theoretical framework is already available,
in the family of variational phase-field methods: in particular the
Cahn–Hilliard theory for the thermodynamics of solute segregation
in alloys [17,18], supplemented for the scenario at a free surface by
the Cahn theory of wetting at solid–liquid interfaces [19,20] and
surface-mediated spinodal decomposition [21,22]. Variational
methods have some history in the ionics field early theoretical
work in the ionic solid-state demonstrated the utility of variational
methods for interfaces [23,24]. In 2003, Bishop et al. [25] published
a Cahn–Hilliard framework for spinodal decomposition in ionic
solids. The following year, a number of studies treating electro-
chemical systems with a phase-field formalism appeared, includ-
ing a general application of the Cahn–Hilliard framework in
electrochemical systems by García et al. [26], a phase-field study
of an electrode–electrolyte interface by Guyer et al. [27,28] and
an application to the battery electrode LiFePO4 by Han et al. [29].
Since then, others have adapted variational thermodynamic meth-
ods to electrochemical systems, often in the context of lithium-ion
battery intercalation electrodes [30–33]. However, despite the
importance of surface dopant segregation for the electrochemical
behavior of mixed conductors, a general thermodynamic frame-
work for this phenomenon which takes the defect chemistry of
MIECs into account has not been reported.

Segregation is driven by short-range chemical (to include the
short-range effects of cation size mismatch) as well as long-range
electrostatic interactions, and as such any useful thermodynamic
framework should incorporate both. A theoretical and experimen-
tal study of the segregation of dopants in lanthanum manganate
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perovskite MIECs was recently conducted by Lee et al. [34]. This
study presented a hypothesis, supported by first principles calcula-
tions, that the principal driving forces for dopant segregation in
these materials are the (positive) elastic energy created by the sub-
stitution of the larger strontium cation for lanthanum (other dop-
ant and host cations were also considered), which is partially
relieved at the surface, and an electrostatic interaction between
the effectively negatively-charged dopant and positively-charged
oxygen vacancies which also tend to aggregate at the surface.
The modeling framework presented in this paper considers both
types of driving forces, predicting dopant cation and oxygen
vacancy concentrations as a function of temperature, the partial
pressure of oxygen, material composition (bulk dopant concentra-
tion) and distance from the surface.

The concept of the gradient energy plays a critical role in the
Cahn–Hilliard framework and related variational methods. Its phe-
nomenological underpinning is that a gradient in concentration (or
a gradient in the order parameter in the case of Allen–Cahn models
treating two distinct phases) is associated with a strictly positive
contribution to the free energy that will always be present in a
concentrated system in which solute interactions (or defect inter-
actions in an ionics context) can no longer be ignored. That the gra-
dient energy is positive arises from the breaking of symmetry
relative to the spatially homogeneous case: ordered configurations
that extend infinitely in space (and represent major components of
a free energy-minimizing distribution of such configurations) can
no longer be realized when solute concentrations are not spatially
uniform. Binder has shown that the gradient energy appearing in
the Cahn–Hilliard formalism can be related to lattice models such
as an Ising model [21]. In spinodal decomposition, the gradient
energy coefficient determines the width of solute-rich and sol-
ute-poor regions in the spinodal. Analogously, in the segregation
of charged cations to the surface, it is the gradient energy that con-
trols the depth of cation enrichment.

2. Theory and implementation

The notation used in the following derivation will conform to
the conventions of defect thermodynamics.

Consider a perovskite oxide (ABO3) with an aliovalently doped
cation (D) at the A-site, compensated by oxygen vacancies and a
bound hole state at the B-site (i.e., ½D0� ¼ ½B�� þ 2½V��O�, where the
brackets indicate concentrations and the Kröger–Vink notation
has been used to indicate dopants, B-site cations and oxygen
vacancies). The dopant cation is assumed to be larger than the host,
and as such there is a negative energy associated with a dopant
cation located at the surface relative to the bulk; similarly, oxygen
vacancies are energetically favored at the surface relative to the
bulk. Oxygen adsorbs dissociatively at the gas-exposed surface,
and is incorporated into the bulk by combining with a vacancy
according to the reactions

1
2

O2ðgÞ þ s�O0 þ B� ð1aÞ

O0 þ V��O�Ox
O þ sþ B� ð1bÞ

where s is a site on the surface of the material, O0 is a negatively-
charged adsorbed oxygen, B� is a positively-charged B-site cation,
V��O is an effectively +2 charged oxygen vacancy, and Ox

O is a lattice
oxygen ion. The domain of the problem is semi-infinite (see
Fig. 1), which means either a bulk material or a film thick enough
that segregation and charge separation at the free surface is not
affected by segregation and charge separation at the substrate.1

Following the development found in Refs. [19,26,20], the semi-
grand potential per unit surface area is
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where yðxÞ is the dopant site fraction, hðxÞ the site fraction of
B�; vðxÞ is the site fraction of vacancies, /ðxÞ is the electrostatic
potential, lO2

the chemical potential of oxygen in the gas, n; nv

and nh are the molar densities of A or B cation sites in the bulk,
oxygen sites in the bulk and adsorption sites at the surface, respec-
tively, �r the relative permittivity, �0 the permittivity of free space
and c and cv are gradient energy coefficients. The free energy den-
sities W and U pertain to the bulk and the surface, respectively.
Here the gradient energy for holes along with the cross-term gradi-
ent energies are ignored.

In equilibrium, this functional is minimized with respect to the
functions y; h; v and /, as well as the scalar h. The minimization is
subject to two constraints related to the conservation of mass in
the system:Z 1

0
ðy� �yÞdx ¼ 0 ð3aÞZ 1

0
ðnhþ 2nvv � n�yÞdx ¼ nhh ð3bÞ

where �y is the average dopant site fraction in the material. These
constraints are added to the functional using Lagrange multipliers.

Obtaining the Euler–Lagrange equations involves conventional
differentiation with respect to h, and variational differentiation
with respect to v ; h; / and y. Differentiating with respect to h
and setting the result equal to zero, it becomes clear that

kh ¼
1
nh

@U
@h

ð4Þ

where kh is the Lagrange multiplier corresponding to the constraint
(3b). kh can thus be eliminated from the Euler–Lagrange equations.
Aside from the potential at infinity, which is fixed to zero as refer-
ence, all boundary terms are natural. However, the condition of a
zero derivative at infinity for y and v, when combined with the mass
conservation constraints, yields a Dirichlet condition for y, and an
electroneutrality condition, which reflects the absence of charge
separation in the bulk of the material. The Euler–Lagrange equa-
tions arising from the minimization of the free energy functional
are thus

Fig. 1. The semi-infinite computational domain: the surface is in equilibrium with
the bulk and the gas.

1 For the purposes of this demonstrative study, the Schottky equilibrium (i.e., the
influence of cation vacancies) has been expressly ignored, since this would add at
least two additional field variables to the simulation. The same formalism could,
however, be used to model Schottky disorder as well.
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