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a b s t r a c t

The utility of the Debye–Grüneisen has been investigated with respect to a finite-temperature fitting
parameter known as the scaling factor. This scaling factor is studied using bcc, fcc, hcp systems and
the Mg–Zn binary system. Predicted Debye temperatures, using a calculated scaling factor, show good
agreement with experiments and improvements over the scaling factor derived by Moruzzi et al.
Finite-temperature thermodynamic properties of Mg, Zn, Mg4Zn7, MgZn2, and Mg2Zn11 are investigated
to show the efficiency and improved accuracy of the calculated scaling factor. For the intermetallic com-
pounds except Mg2Zn11, HD predictions are improved upon greatly by implementing a calculated scaling
factor. Along the same line, heat capacity is also predicted, showing good agreement with experimental
values for these compounds. For Mg2Zn11, the Debye–Grüneisen model cannot account for anomalous
lattice dynamics at low temperatures.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Within the fields of applied physics, materials modeling and
thermodynamics property predictions, the Debye–Grüneisen
model is used extensively due to its simplicity and accuracy in
the low temperature regime for crystalline systems, simple and
complex. Such an advantage becomes better seen with more com-
plex crystal systems that significantly amplify computation times
[1]. However, when the Debye–Grüneisen model is applied in
many cases, the predicted Debye temperatures (HD) do not match
with experimental values, a consequence of simplifying the speeds
of sounds with respect to the bulk modulus (B) and density (q), or
v ¼

ffiffiffiffiffiffiffiffiffi
B=q

p
. In such instances, the model requires a semi-empirical

multiplicative scaling factor which will help yield the correct HD

[1–4]. While previous studies have utilized empirical scaling fac-
tors successfully for various crystal systems, the agreements with
experiments are somewhat coincidental due to the fact that most
materials have a Poisson ratio of approximately 1/3 [2]. It is thus
desirable to develop an approach to predict the scaling factor.

Typically, the Debye model is described with just a single speed
of sound accounted for all acoustic and optical modes, i.e. a linear
phonon dispersion that has no directional dependence and is iden-
tical for transverse and longitudinal waves. Crystal speed of sound

anisotropy is also ignored as Debye acoustic modes are isotropic
and non-directional [5]. However, even for an isotropic medium,
the assumption of a single speed of sound for transverse and lon-
gitudinal waves is incorrect [2], as shown schematically in Fig. 1.
Thus, one actually uses an effective speed of sound that incorporates
the transverse and longitudinal speeds in the Debye model. As dis-
cussed by Anderson [6], for an isotropic solid, this effective speed
of sound can be expressed as:

v ¼ 1
3

2
v3

t
þ 1

v3
l

� �� ��1=3

ð1Þ

where v is the effective speed of sound, v t ¼
ffiffiffiffiffiffiffiffi
S=q

p
the transverse

speed, v l ¼
ffiffiffiffiffiffiffiffi
L=q

p
the longitudinal speed, q the density, S the shear

modulus, and L the longitudinal modulus. If instead of calculating
the effective speed of sound from Eq. (1), one calculates v by the for-
mula for the speed of sound in a medium (v ¼

ffiffiffiffiffiffiffiffiffi
B=q

p
) and obtains

the Debye temperature as follows

ðHDÞ0 ¼
�hm
kB

6p2N
V

� �1=3

ð2Þ

where �h is the reduced Planck constant, m the constant velocity of
sound, kB the Boltzmann constant, N the number of particles, and
V the volume [5]. However, thus calculated Debye temperature is
significantly different from the ones evaluated from experimental
data. Often, this discrepancy is mended by the introduction of a
scaling factor s that scales the predicted (HD)0 to an experimental
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one, as shown below, which was implemented by Moruzzi et al. [2]
and modified by Shang et al. [4]:

HD ¼ sAV1=6
0

B0

M

� �1=2 V0

V

� �c

ð3Þ

In this equation, s is the Debye temperature scaling factor, c the

Grüneisen parameter, A a constant equal to 6p2
� �1

3�h=kB with the
equilibrium volume V0 given in Å3, the bulk modulus at 0 K repre-
sented by B0 in GPa, and the atomic mass M in grams [4]. The aver-
aged atomic mass of an intermetallic compound is taken as the
geometric mass to account for large differences in the masses of
the pure elements. As shown in previous studies, the logarithmic
average of mass can also be used [7]. If the scaling factor is fit from
experimental results, then the Debye temperature is not strictly cal-
culated from ‘‘first-principles’’. Note that the Grüneisen parameter c
scales (HD)0 with the following equation:

HD ¼ HDð Þ0
V0

V

� �c

ð4Þ

where V0 and V are the volumes of the rigid-lattice equilibrium
(separation distance) and the evaluation volume, respectively.
There are three commonly used models for the Grüneisen parame-
ter c to account for vibrational anharmonicity: Slater (S) [8], Dug-
dale–MacDonald (DM) [9], and Vaschenko–Zubarev (VZ) [10]. By
expressing the parameter as c = (1 + B00)/2 � x and choosing x = 2/
3, x = 0, or x = 1, one arrives at the Slater, VZ and DM limits [11]. This
formulation captures the linearity of the parameter with respect to
the derivative of the bulk modulus [10] and can represent the high
and low temperature assumptions of Grüneisen parameter, respec-
tively [1,2,4]. Tests must be conducted to select the models for c. In
this work, as per recommended by Shang et al. [4], the Slater and
Dugdale–MacDonald approximations will be evaluated.

Moruzzi et al. [2] and Herper et al. [3] studied the contributions
of such a scaling factor in terms of magnetic and non-magnetic
cubic elements. It was demonstrated that by fitting the longitudi-
nal and shear moduli with respect to B, roughly constant scaling
factors can be derived for many cubic transition metals with a
few exceptions. The fitted scaling factors are 0.617 and 0.7638
for non-magnetic and magnetic transition metals, respectively.
Chen & Sundman [1] and Lu et al. [7,12] have also studied the scal-
ing contributions for transition metals, cubic carbides, and nitrides.

In this work, we will validate the findings of Lu et al. and extend
the method to perform a case study on the Mg–Zn binary system.
While Chen and Sundman [1] and Lu et al. [7,12] have studied var-
ious classes of crystals, a systematic study of the scaling factor for
one binary system has not be accomplished. The Mg–Zn system is
chosen as a case study because it contains a multitude of stoichi-
ometric intermetallics that have been studied extensively using
experiments [13–19]. Mg–Zn intermetallics also have very differ-
ent crystallography including monoclinic, hexagonal Laves, and
cubic phases. The data availability, complexities and crystallo-
graphic differences make the Mg–Zn a suitable case study.

2. Methodology

The Debye model describes the vibrational properties of an iso-
tropic material. Eq. (1) shows that the effective speed of sound in a
material can be averaged by the transverse and longitudinal speeds
of sound vt and vl. Both moduli can be represented by the Poisson
ratio, t, and bulk modulus, B:

L ¼ 3Bð1� tÞ
1þ t

and S ¼ 3Bð1� 2tÞ
2ð1þ tÞ ð5Þ

Substituting Eq. (5) into Eq. (1) yields an equation for the scaling
factor as a function of the Poisson ratio, which is also shown in
Fig. 2 and in agreement with previous findings [1,7]:

sðtÞ ¼ 35=6 4
ffiffiffi
2
p 1þ t

1� 2t

� �3=2

þ 1þ t
1� t

� �3=2
" #�1=3

ð6Þ

The validation of this equation can be done with experimental
values obtained by Moruzzi et al. [2] and Herper et al. [3]. Moruzzi
determined, by fitting cubic non-magnetic metals, that L and S can
be represented by 1.42B and 0.30B, respectively. When these val-
ues are put into Eq. (6), the predicted value of the scaling factor
is 0.617 (t = 0.3661), as found by Moruzzi. The same analysis can
be applied to L and S determined for cubic magnetic metals by

(a) (b)

(c) (d)

Anisotropic Isotropic

Fig. 1. Shown in (a and b) are spherical plots of the speeds of sound in units of km/s
for the anisotropic and isotropic cases, respectively. Plots (b and d) represent the
(001)-plane cross-sections of (a and b). Red (dot dashed), green (solid) and blue
(dashed) represent the longitudinal, transverse 1 and transverse 2 speeds of sound.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 2. Scaling factor, s, as a function of the isotropic Poisson ratio, m. Please note
that a m = 0 does not denote a s of 1, but rather 1.327.
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