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a b s t r a c t

A knowledge of the physical properties of materials as a function of temperature, composition, applied
external stresses, etc. is an important consideration in materials and process design. For new systems,
such properties may be unknown and hard to measure or estimate from numerical simulations such
as molecular dynamics. Engineers rely on machine learning to employ existing data in order to predict
properties for new systems. Several techniques are currently used for such purposes. These include
neural network, polynomial interpolation and Gaussian processes as well as the more recent dynamic
trees and scalable Gaussian processes. In this paper we compare these approaches for three sets of
materials sciences data: molar volume, electrical conductivity and Martensite start temperature. We
make recommendations depending on the nature of the data. We demonstrate that a thorough knowl-
edge of the problem beforehand is critical in selecting the most successful machine learning technique.
Our findings show that the Gaussian process regression technique gives very good predictions for all
three sets of tested data. Typically, Gaussian process is very slow with a computational complexity of typ-
ically n3 where n is the number of data points. In this paper, we found that the scalable Gaussian process
approach was able to maintain the high accuracy of the predictions while improving speed considerably,
make on-line learning possible.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Through the years, various machine learning techniques have
been employed to fit sets of known data associated with certain
properties in order to predict these properties on sets of unknown
data. The ‘‘No Free Lunch theorem’’ was introduced in 1997 by
Wolpert and Macready [1], stating that for every optimization
problem, there is no perfect algorithm. For a given problem for
which an approach works well, there exists another problem for
which the same method fails miserably. This paper aims at com-
paring different machine learning techniques for predicting prop-
erties of different types of data. Our focus is on material science
data of molten oxides systems collected from the literature. It is
important for material science engineers to know the physical
properties of such systems in order to design new materials, or
improve the current processes.

Currently, there are a variety of machine learning techniques for
predicting a function f ðxÞ given x. Polynomial interpolation was
one of the first to be developed [2], and is still a very popular
method in fields such as digital photography and image re-sam-
pling as well as for scientific data. Gaussian processes (GPs) were
introduced in the 1940s [3], but it is only in 1978 that they were
employed to define prior distributions over functions [4]. More
recently, with the introduction and increasing popularity of neural
networks with back propagation, Gaussian processes started to be
used for supervised machine learning [5] and for regression prob-
lems [6]. In the last few years, various attempts have been made to
improve known approaches, in particular by the group of Robert B.
Gramacy at the University of Chicago, with the introduction of
treed Gaussian processes [7] and dynamic trees [8]. In 1996, Rad-
ford Neal showed that a Bayesian neural network with a Gaussian
prior on individual weights with an infinite number of hidden
nodes converges to a GP [9].

In this work, we perform a comparative study of the predicting
power of six of the most popular and emerging machine learning
techniques. The different techniques are tested on datasets from
the materials science industry: molar volume (MV), electrical
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conductivity (EC) and Martensite temperature (Ms), respectively
consisting of smooth, nonsmooth and noisy (several local minima
in a small domain) data. We consider data on molar volume to
be smooth because the theory tells us that it should vary almost
linearly and also because the experimental datasets are in good
agreement at equal composition and temperature. For the electri-
cal conductivity, the data is very scattered and that is why we con-
sider it to be nonsmooth. As for Ms, we consider the data noisy
because here we are omitting to include certain influential param-
eters such as the fine austenite grain size [10] and are considering
uniquely the initial composition. We wish to demonstrate how a
thorough knowledge of the system as well as machine–human
interactions can improve the quality of the predictions. Stry et al.
compared the quadratic and linear interpolation applied to the
numerical simulation of crystal growth [11]. They found that a cus-
tom quadratic approach developed by them gave more accurate
results with smaller computational time. Ghosh and Rudy found
an improvement of the relative error of reconstructed versus mea-
sured epicardial potentials of Electrocardiographic Imaging when
using a quadratic interpolation instead of linear one [12]. Skinner
and Broughton published their work on neural networks applied
to material science, and compared different methods for finding
the weights of feed-forward neural networks [13]. In the present
paper we have added comparisons with more recent techniques:
linear and quadratic interpolation, neural network, Gaussian pro-
cesses (GP), and dynamic trees. We also include a comparison with
a new strategy, the scalable Gaussian process regression (SGP) [14]
that was developed to speed up Gaussian process regression while
maintaining an acceptable prediction error. This was motivated by
the idea to introduce physical properties as one of the possible
parameters inside the FactOptimal module of the FactSage soft-
ware. FactSage is a software system that was created for treating
thermodynamic properties and calculations in chemical metal-
lurgy [15]. It is used today all over the world by more than 400
universities and companies in the domain of material chemistry.
It contains various modules allowing users to perform a wide vari-
ety of thermochemical calculations [16]. The FactOptimal module
[17–19] allows one to find the best set of conditions given con-
straints while optimizing chosen properties. The program uses
the NOMAD derivative-free solver [20] to find the best parameters.
For example, given chemical system (ex. x1Cþ x2Mnþ x3Siþ x4Cr),
one may wish to find the values of chemical compositions (xi) that
would give an equilibrium temperature of around 275 �C. To do so,
NOMAD tries different combinations of compositions (xi), obtain-
ing the corresponding value of temperature from FactSage until,
hopefully, an optimal solution is found. The idea to introduce
material properties as possible constraints or as values to be opti-
mized requires the use of a machine learning tool to predict these
properties. Because a large number of predictions are performed
during a FactOptimal run, the computational time to make these
predictions is of great importance. Furthermore, we wish to make
on-line learning possible, as it may be the case that new
experimental data is fed dynamically into the learning database.

Making predictions on the Martensite start temperature is not a
new domain. Some authors use a neural network model with good
results [21,22]. A thermodynamic framework [23] or a purely
empirical approach [24,25] have also been studied. Soumail et al.
in 2006 [26] compared these methods and concluded that although
the thermodynamic approach provides satisfying results, there is a
strict limitation in the query points, based on the fundamental
assumptions upon which the model was based. They observed that
the neural network approach performs just as good as others but
with a higher amount of outliers or wild predictions, therefore they
recommended the use of a Bayesian framework. Using a Bayesian
GP model, very accurate predictions were obtained for the predic-
tion of austenite formation (Martensite is formed in carbon steels
when cooling austenite) [27].

An empirical model [28] and a combined model with quantum
chemical molecular dynamics and kinetic Monte Carlo method [29]
were applied to predict electrical conductivity. Both models are
developed specifically for electrical conductivity and would require
extensive work to be adapted to predict other physical properties.
To the best of our knowledge, all published material on Ms and
electrical conductivity prediction discuss their results in terms of
prediction accuracy and no report is given on the computational
time.

In the following sections we first provide a description of the
databases that were employed for this research, then briefly
describe each interpolation technique. Then we present results in
terms of computational time and accuracy. We then discuss the
results and make recommendations on the use of each method
depending on the type of problem.

2. Materials data

For this work, we have access to three databases of experimen-
tal points collected from the literature. The database employed for
molar volume predictions has 2700 data points (n = 2700), with
various compositions in mole percent on 10 dimensions (D = 10),
temperature in Kelvin and an associated molar volume value in
cubic centimeters per mole. The electrical conductivity database
consists of approximately 9300 data points with compositions in
mole percent over 10 dimensions, temperature (T) in Kelvin
(D = 10) and an associated electrical conductivity (EC) value in Sie-
mens per meter. For both the MV and EC databases, the materials
are insulating oxides, therefore EC refers to the ionic conductivity.
The Martensite start temperature (Ms) database consists of
approximately 1100 data points with composition values in weight
percent on 15 dimensions (D = 15) and an associated Ms value in
Kelvin. The main element, Fe, is not used in the regressions. Table 1
gives the range of compositions of each database.

Some physical properties can be measured with reasonable
accuracy, therefore there is very little discrepancy between the
different data sources. Moreover, certain properties have a quasi lin-
ear dependence with the constituents chemical compositions, while
others may have a more complex dependence on compositions and

Nomenclature

d Kronecker delta
l mean
j electrical conductivity
r variance
D number of dimensions
GP Gaussian process
Ms Martensite start temperature
MV molar volume

n number of training (experimental) points
NG Gaussian Noise
NS Nash–Sutcliffe model efficiency
RMSE root mean square error
T temperature
w width of a Gaussian kernel
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