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a b s t r a c t

Two approaches to describe a constitutive fractional Zener model at large strain are presented. Both
viscoelastic Zener models consist of a nonlinear elastic spring and a fractional Maxwell element in
parallel. The fractional Maxwell element represents the viscoelastic behaviour of the formulation. Here,
development of a new fractional viscoelastic material model under consideration of finite strain theory is
presented. Additionally, the constitutive equations based on two different algorithmic approaches to
capture the fractional time integration within this material model are derived. The consideration of frac-
tional elements enables the characterization of highly inelastic, time dependent materials with relatively
few material parameters. For the fractional element, a material parameter a determines the transition of
the rheological element’s behaviour between spring (a ¼ 0) and dashpot (a ¼ 1). Accuracy and efficiency
of a classical (non-recursive) and a new recursive algorithm to handle the fractional elements have been
verified and validated by the comparison of several finite element (FE) simulations to material test
results. The simulations found on finite strains and an implicit time integration scheme. Finally, a FE
moulding simulation, found the extended constitutive model for the explicit time integration scheme
has been carried out to illustrate the performance for large scale simulations in comparison to a real
forming process and found to be quite efficient.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The field of fractional calculus, which is devoted to the study
and application of derivatives and integrals of arbitrary order (real
or complex), can be dated back to 1695 when de L’Hospital and
Leibniz were debating whether it make sense to define an operator
dn
=dtn for n ¼ 1=2 [1].
Numerical methods [2–6] for the solution of fractional differen-

tial equations (FDEs) are of large importance because of their
numerous fields of applications, e.g. electrochemical processes
[7,8], dielectric polarization [9], coloured noise [10], chaos [11],
bioengineering [12–14], to construct a transient probability
density of non-linear systems [15] and others. Classical solution
methods, proposed by e.g. Koh and Kelly [16], Zhang and Shimizu
[17], Ruge and Wagner [18], Shokooh and Suarez [19], Trinks and
Ruge [20], require large computational resources. Therefore, inter-
est has grown to develop stable and efficient numerical techniques
for the computation of FDEs (linear and nonlinear). A non-classical
method for the numerical solution of FDE order 0 < a � 1 has been
proposed by Yuan and Agrawal [21] (YA algorithm) which has been

extended to 1 < a � 2 by Trinks and Ruge [20]. Diethelm revealed
the reason of the slow convergence rate of the YA algorithm and
proposed modifications which led to an improved performance
[22,23]. A further modification has been suggested by Birk and
Song [24] which overcomes the shortcomings of the YA algorithm
and Diethelm’s modified method.

In theory of viscoelasticity, fractional calculus has been used for
several years to characterise complex phenomenological behaviour
with less material parameters. Although the approaches are based
on phenomenological observations, Bagley and Torvik [25,26] have
shown that fractional calculus can be used to represent the
mechanical behaviour in molecular theories. The same authors
[27,28] as well as Koeller [29] made some fundamental contribu-
tions to the modelling of viscoelasticity using fractional calculus.
Some further work on the application of fractional calculus in
theory of viscoelasticity has been presented in [30–33]. In the last
years, two articles dealing with fractional viscoelastic material
models were published. Di Paola et al. [34] proposed a fractional
relaxation and creep function for the description for linear
viscoelastic behaviour. They showed the derivation of the frac-
tional description by Laplace transformation and presented some
analytical comparison to test results. This approach was extended
by Di Paola et al. [35] to the analytical description of the behaviour
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of a Bernoulli beam. Furthermore, his group (Di Paola et al. [36]
proposes a discretization scheme which bases on continuous
mechanical models of fractional derivatives. This scheme is useful
to obtain a mechanical description of fractional derivatives.

Polymeric and rubber-like materials are often subjected to large
deformations in engineering applications which necessitates the
development of nonlinear models for more precise analysis and
design. Only very few articles Sjoeberg [37], Adolfsson and Enelund
[38], Adolfsson [39], Lion and Kardelky [40], Sjoeberg [37], Müller
et al. [41], Zopf and Kaliske [42], Müller et al. [43], Wollscheid
and Lion [44] have been published on the application of fractional
order operators in finite strain viscoelasticity. In this article, two
fractional element based algorithms for viscoelastic material mod-
els are presented and compared. For both approaches, the symbolic
rheology underneath is a fractional Zener model (see Fig. 1) and
both consider large strain theory. Ala et al. [45] compared the
behaviour of rheological elements which base on differential
equations to electrical circuits. The derivation of the Zener model
is following the derivation of the viscoelastic material model of
Dal and Kaliske [46]. Another viscoelastic material formulation, pre-
sented by Boyce et al. [47], considers e.g. large strain theory, crystal-
lisation and hardening. Pouriayevali et al. [48], Ayoub et al. [49]
published similar approaches based on hyperelasticity with viscous
behaviour and showed the ability to represent the real material
behaviour of a wide range of rubber compounds under high rates.

Simply, the basic formulation shown subsequently could be
expanded to a generalized fractional Maxwell model. The differ-
ence between the two approaches is the algorithmic computation
of the fractional time derivative. For the first formulation, a classi-
cal treatment is used. Here, the authors follow the derivation of
Schmidt and Gaul [50] in order to compute the fractional time
derivative. Their material formulation is expanded in this article
due to the fact that the small strain theory used by them is not per-
missible for the description of uncured rubber compounds which
will be modelled in here. This classical approach requires the
storage of the whole material history and, therefore, is quite
storage and time consuming. Based on these findings, the authors
developed a nonlinear large strain fractional derivative based
constitutive description and derived the accompanying new algo-
rithmic formulation by adapting the recursive algorithm for frac-
tional derivatives of Birk and Song [24]. This derivation yields a
more efficient algorithm and enables complex simulations.

2. Numerical computation of fractional time derivatives

In this section, the basic equations of the computation of
fractional time derivatives of a function zðtÞ are given for the clas-
sical Schmidt and Gaul [50] and for the new recursive approach
(Birk and Song [24]). The operator Da

t fzðtÞg denotes a fractional
time derivative of a function zðtÞ of the order a.

2.1. Classical formulation of fractional derivatives

Different definitions of fractional derivatives are available.
Among them, the Grünwald definition Grünwald [51], Schmidt

and Gaul [52] involves the fewest restrictions on the functions to
which it is applied and can be implemented into numerical
algorithms in a practical way. Hence, the approach is used for
the computational solution of fractional time derivatives. The
shown derivation will be close to the publication of Schmidt and
Gaul [50], where the general formula of a fractional derivative of
integer order n is defined as

Dn
t fzðtÞg ¼

dnzðtÞ
dtn ¼ lim
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in dependency on the binomial coefficient (compare Oldham and
Spanier [2]), which is defined by n and j. The product of the
binomial coefficient and ð�1Þj can be expressed as
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in dependency on the gamma function C and the integer number j,
which is also known as the Grünwald definition. If n is replaced by
any real number a and the time step Dt by the ratio t=N, Eqs. (1) and
(2) lead to
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This equation represents the numerical solution of a real order time
derivative, which is given as a series expansion. The numerical
solution requires storage of the history for each time increment of
the function z from time t ¼ 0 up to the current time t.

2.2. Recursive formulation of fractional derivatives

The approach presented in this section follows the description
of Birk and Song [24]. As a starting point the definition of the
fractional time derivative

Da
t fzðtÞg ¼

1
Cðdae � aÞ

Z t

0

ddaefzðsÞg
dsdae

1

ðt � sÞ1þa�dae ds; ð4Þ

explored by Diethelm [22], is given. The floor function bac rounds
down the argument a to the nearest integer and the ceiling function
dae rounds up the argument a to the following integer. These two
functions are basic operations of this approach (e.g. in Eq. (4)). For
the computation of the fractional derivative, a transformation into
the frequency domain

F Da
t zðtÞ

� �
¼ ðixÞaZðxÞ ð5Þ

is proposed. Here, a Fourier transformation is used and the power
term ðixÞa results in

ðixÞa ¼ 2ð�1Þbac sin pa
p
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where �a ¼ 2a� 2dae þ 1. The integral I of Eq. (6) is solved by a
numerical approximation scheme. Therefore, the following
substitutions

p ¼ ð1�
�qÞ2

ð1þ �qÞ2
; �q ¼ 1� ffiffiffi
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have been used in order to transform the limits of the integral I
from ½0;1� to ½�1;1� yielding

I ¼ ðixÞdae
Z þ1
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Fig. 1. Rheology of fractional Zener model.
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