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a b s t r a c t

A factor that can reduce particle pinning force significantly in grain growth is found when the
grain-boundary is pinned by multiple particles. The pinning force, in this case, is a function of particle
radius over inter-particle distance. A previously proposed phase-field model for particle pinning is used
to validate this predicted pinning force reduction in two and three dimensions. When applied to coherent
pinning particles, the same effect is observed in simulations. It is shown that, at application relevant high
particle volume fraction, the average grain size is affected by this reduction of pinning force.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Study of the particle pinning in grain growth has been an
important topic for a long time since introducing second-phase
precipitates is one of the most commonly used method to inhibit
grain growth and achieve better mechanical properties through
Hall–Petch relation in polycrystalline materials. The pinning force,
as formulated by Zener, comes from grain-boundary (GB) which
forms a bow-out toward the migration direction during its interac-
tion with a second-phase particle [1]. Therefore, the GB shape near
the pinning particle is critical to pinning force evaluation [2,3].
When multiple particles are considered, the total pinning pressure
is assessed using a summation of pinning force from individual
particles [4–6]. While both experimental and computational stud-
ies have shown good agreements with this theory, they also sug-
gested a deviation from the prediction at high particle volume
fraction [5]. Different corrections have been proposed in this case
based on the break-down of random particle distribution [10,12],
particle overlaps [20] or the so called Louat effect where the
pulling force of particles in front of an advancing boundary is
considered [7,8]. However, an important factor, the change of
near-particle GB shape at high particle volume fraction has been
ignored.

In this work, we address this issue by calculating the GB shape
between nearby particles exploiting a previously ignored factor in
Ashby’s work [2], and demonstrate, using both analytics and
numerical method, how the change of GB shape reduces the

pinning force and affects the average grain size at high particle
volume fraction.

2. Particle pinning force in grain growth

In a configuration where two pinning particles are close to each
other (which occurs at high volume fraction, or in low volume frac-
tion case with highly inhomogeneous distribution of second-phase
particles), the GB shape needs be determined using Ashby’s
method [2] since the near-particle boundary shape in Hellman’s
approach [3] is only a zero driving force approximation. The
axi-symmetric curvature equation for a single particle in cylindri-
cal coordinates is a second order ordinary differential equation
(ODE) with driving force P as a free parameter [2].
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Here c is the GB energy, R and z are defined in Fig. 1, zR and zRR

are the 1st and 2nd derivative of z with respect to R. Ashby et al.
solved this equation by integrating from the GB-particle contact
point with a given position angle b (as defined in Fig. 1) and an
interface balance condition cosa ¼ ðc1 � c2Þ=c where c1 is the sur-
face energy for particle-grain1 interface, c2 is the surface energy for
particle-grain2 interface [2]. These two boundary conditions
specify the coordinates and the GB slope at the contact point. With
a prescribed driving force P, GB energy c and two particle-grain
interfacial energies c1 and c2, the GB shape is completely
determined by solving Eq. (1). However, Ashby imposed another
condition that requires a flat boundary at the midway (L/2) of
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two particles, and argued that such a condition gave a relationship
between driving force P and angle b (note: this is an L dependent
relation). This argument seems reasonable but is inconsistent with
their theory on the critical pinning angle presented earlier in the
same paper [2] as we will see.

The pinning force in Fig. 1 configuration is simply Fz ¼
2pR0c cos b cos a� bð Þ. The maximum pinning force is then Fmax

z ¼
pR0cð1þ cos aÞ with the critical pinning angle given by bcrit ¼ a=2.
However, according to Ashby’s flat midpoint argument, the angle
bcrit should be associated with the maximum driving force Pmax with
inter-particle distance L as a parameter. For b > bcrit, a stable pinning
configuration can exist only under a decreased driving force
P < Pmax. Now, it is easy to see an inconsistency between the two bcrit

relations since one depends on the inter-particle distance L while
the other is a simple function of a. To resolve this controversy, the
maximum pinning force will be derived analytically in two dimen-
sions (2D) with the inter-particle distance L as a parameter, and gen-
eralized to three dimensions (3D) numerically.

2.1. Pinning theory in 2D

While the particle pinning theory in 2D is very different from its
3D cousin, it is a simpler demonstration of the basic physics. We
choose to present our L dependent pinning force theory in 2D first
because our key argument can be presented analytically in this
case. In 2D, Fig. 1 is still a good illustration of the basic geometry.
Instead of solving for 3D GB shape from Eq. (1), the 2D GB shape is
a simple circle with radius q given by q = c/P. The flat midpoint
condition can be easily expressed as the following:

L
2
¼ R0 cos bþ c

P
cosða� bÞ: ð2Þ

This configuration is stable as long as the driving force is smal-
ler than Pmax beyond which the grain-boundary will detach from
the pinning particle. One can see that the condition for maximum
driving force is sin (a � b) = 2 sin aR0/L by rearranging Eq. (2) and
using oP/ob = 0. Since the pinning force is given by 2c cos(a � b),
by eliminating the cosine factor with the maximum driving force
condition, the maximum pinning force is then:
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For incoherent particles, the maximum pinning force is reached
at b = cos�1(2R0/L) rather than the simple 2D maximum pinning
force condition b = p/2. Comparing with the classic pinning force
theory that gives Fmax

z ¼ 2c, this equation indicates that particle

pinning becomes less effective when the inter-particle distance
becomes comparable with the particle size. Although derived in
2D, Eq. (3) clearly demonstrates that the maximum pinning force
is given by not only the local contact condition (angle a) but also
the relative size of particle over inter-particle distance.

2.2. Pinning theory in 3D

To formulate the same L-dependent particle pinning theory in
3D, one needs to solve for the GB shape from Eq. (1) numerically
(we use simple 4th order Runge–Kutta). Integration of the curva-
ture equation (Eq. (1)) starts from the midway (L/2) with flat
boundary condition dz/dR = 0 and z = C1. On the other end, the GB
should join the pinning particle at the correct angle such that the
surface energy balance condition cos a = (c1 � c2)/c is satisfied.
Assuming a spherical particle of radius R0 is centered at the origin,
this joining angle condition can be expressed as:

dz
dR

����
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¼ cotða� bÞ: ð4Þ

By tuning the initial condition C1, the GB line can be moved up
and down such that the point with correct joining angle can be
positioned on the particle sphere. The maximum driving force Pmax

and the associated position angle bmax are then found by increasing
P continuously until there is no correct solution for the GB shape.
Since the pinning force is given by Fz ¼ 2pR0c cos b cos a� bð Þ,
the maximum pinning force can be directly evaluated with bmax.

In the regime where the particle radius is much smaller than
the inter-particle distance, we found that the GB-particle joining
angle bmax for the maximum pinning force configuration is actually
very close to the critical value bcrit = a/2. This is expected as this
condition is very similar to the single particle configuration Ashby
used to derive the relation. As the inter-particle distance becomes
comparable to the particle size, bmax becomes smaller than bcrit.
Solution of GB shape for b = bcrit in this condition still exists but
only for a smaller driving force P and is not dynamically accessible
by surface energy minimization in the phase-field method we use
to validate the theory in the next section.

3. PF model for quantitative evaluation of particle pinning force

To validate the pinning force theory proposed in the previous
section numerically, we employ a phase-field (PF) model to evalu-
ate the particle pinning force. As demonstrated in previous works
[9,19], this method can quantitatively reproduce the particle pin-
ning force at single particle level in grain growth. Here the model
is briefly described and more details can be found in Ref. [9]. The
phase-field free energy functional is:
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where the gradient energy coefficient is a product of numerical
parameter ni and dimensional constant K, and
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with dimensional constant Df, numerical parameter a, b and cij. Here,
the first two terms are commonly seen in PF grain growth model,
while the last term in f0 is added to account for the triple junction.
A P term coupled with function h ¼ �g3

1ð10� 15g1 þ 6g2
1Þ is also

added to account for the grain growth driving force in this two-
grain-one-particle simple geometry. The simple grain growth in
Fig. 1 is modeled with g1 for grain1, g2 for grain2 and g3 for pinning

Fig. 1. A boundary seperating grain1 (lower grain) and grain2 (upper grain) is
pinned by multiple second-phase particles of radius R0 and inter-particle distance L.
Only one pinning particle is shown in this window of size L to demonstrate the
geometry, other nearby particles are located at distance L from this one. Window
boundary lines (the two vertical solid lines) are drawn exactly at the mid-point of
two adjacent pinning particles. The GB surface is a function of (R, Z) coordinates.
Position angle b gives the GB-particle contact point. Angle a which is defined
between GB line and the particle surface tangent is given by Young’s force balancing
condition. Surface energies are not labeled here. A modification angle a is needed
due to particle coherency. For an incoherent particle, a = p/2 since c1 = c2. For a
coherent particle, a < p/2.
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