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a b s t r a c t

We explore the possibility of modifying the multiplicity of the basic clusters in the entropy functional
used in the cluster variation method so that the truncation errors arising due to finite size of the basic
clusters may be corrected. The numerical values of the multiplicity of the basic clusters are found by
requiring the modified CVM entropy functional in the tetrahedron–octahedron approximation for the
face-centered cubic structure to yield the nearly exact critical temperatures for ordering and phase
separating systems. This modification correctly reproduces the triple point in a prototypical fcc ordering
system, using the same first neighbor pair interaction energy parameter for all the ordered (L10 and L12)
and disordered (A1) phases, without increasing the computational burden and thereby making a long
standing problem tractable. The modification also improves the agreement between the values of ther-
modynamic quantities (for ordered and disordered phases at arbitrary temperatures and compositions)
obtained from CVM and Monte Carlo simulations.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Computational Thermodynamics (CT) provides an integrated
framework for representing thermodynamic properties, phase
equilibria and phase diagrams of alloy systems. The advantage of
such an approach is the capability to predict those features of
phase equilibria which cannot be easily measured as well as to pre-
dict them for complex multicomponent systems using properties
of lower order sub-systems. CT is most often based on the
CALPHAD method [1]. Another approach for CT is cluster expan-
sion–cluster variation method (CE–CVM) [2,3], which offers a the-
oretically sound alternative by providing an explicit description of
Gibbs energy in terms of short-range order (sro) and long-range or-
der (lro) parameters. However the latter is computationally more
complex and time consuming in comparison with the former.
Further, the accuracy of CE–CVM is limited by the size of the basic
cluster(s) chosen in a particular approximation of the method. The
present contribution develops and demonstrates a procedure for
improving the accuracy of the CE–CVM for fcc systems, without
increasing the computational burden.

We shall consider here phase diagrams and thermodynamic cal-
culations only for first neighbor pair interactions, since theoretical
or reliable Monte–Carlo simulation results which are required for
comparison are available only for this case. Various approxima-
tions of CVM [2] are known to provide different levels of accuracy
in the results. Sanchez et al. [4] and Finel and Ducastelle [5] have

used the tetrahedron–octahedron (TO) approximation of CVM for
the calculation of a phase diagram exhibiting order–disorder trans-
formation in fcc alloys. One of the important achievements of these
CVM calculations is in correctly locating the triple point at a finite
temperature. Simulations by Lebowitz et al. [6] and Diep et al. [7]
have confirmed the triple point at RT=C1 � 1.0, where C1 is the
cluster expansion coefficient (CEC) corresponding to the first
neighbor pair interactions. These studies were further refined by
Kämmerer et al. [8]. The critical temperatures obtained by using
the TO approximation of CVM and the best known values are given
in Table 2.

It may be observed that, in general, critical temperatures ob-
tained by using the TO approximation of CVM are overestimated
in comparison with the best known results. This overestimation
is as high as 20% in the case of triple point temperature. This neces-
sitates a need to improve the CVM-TO entropy functional so as to
improve its accuracy without increasing the computational effort.
There have been some earlier efforts to improve the accuracy of
CVM calculations. With particular reference to the fcc structure, a
hybrid approach of MC simulations and CVM has been applied to
ordering [9] and phase separating systems [10]. Ferreira et al.
[11] have suggested a new functional for the entropy in the hybrid
MC-CVM method. All these approaches are based on compute
intensive MC simulations, which are impractical for multicompo-
nent alloys. A slightly different approach has been taken by Oates
et al. [12] in a modified version of CVM designated cluster site
approximation (CSA). They have considered the tetrahedron
approximation of CSA and treated the coefficient of the term
corresponding to the basic cluster in the entropy functional as an
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adjustable system dependent parameter in addition to the cluster
expansion coefficients (CEC), all of which would be determined
by simultaneous optimization of experimental data.

The source of inaccuracy in the CVM entropy functional, partic-
ularly near phase transitions, can be attributed to the truncation of
entropy functional corresponding to a basic cluster of finite size
[13]. In the present communication, we propose a method of mod-
ifying the entropy functional for the TO approximation of CVM for
binary fcc solutions. We shall then validate the new method by
comparing it with MC simulation which is known to yield more
accurate results.

2. Modification of CVM entropy functional

The configurational Gibbs energy of the fcc phase is expressed
as
G ¼ H � T S ð1Þ

where H and S respectively denote the configurational enthalpy and
entropy. Configurational enthalpy may be expanded as [14]

H ¼
X

i

Cimiui ð2Þ

Here Ci, mi and ui respectively represent cluster expansion coeffi-
cient (CEC), multiplicity and correlation function of the ith cluster.
We note that the enthalpy expression is exact since there is no trun-
cation of the cluster expansion for the enthalpy and the infinite
series terminates in practical situations as the CECs vanish for suf-
ficiently large clusters.

The exact configurational entropy is given by the following
infinite series.

S ¼
X1
i¼1

migi ð3Þ

Here gi is a correction term, known as cumulant function, corre-
sponding to the ith cluster. These are related to partial entropies
Si of the clusters. For the disordered fcc structure for which clusters
and sites are shown in Fig. 1, the entropy expression becomes:

S ¼ S1 þm2ðS2 � 2S1Þ þm3ðS3 � 2S1Þ þm4½S4 � 3ðS2 � 2S1Þ
� 3S1� þ � � � ð4Þ

where S1, S2, S3, S4. . . represent partial entropies of point (1), first
neighbor pair (1,2), second neighbor pair (1,6), triangle (1,2,3) . . .

clusters respectively. The partial entropies in turn can be expressed
in terms of the probability of occurrence of cluster configuration j
on cluster type i, qi;j as follows:

�Si=R ¼
X

j

qi;j ln qi;j ð5Þ

After simplifying Eq. (4) becomes,

S ¼ �R
X

i

cimiSi ð6Þ

where ci is Kikuchi–Barker overlap correction coefficient for the ith
cluster.

In practice, configurational entropy is approximated by retain-
ing a finite number of terms (up to cluster(s) of type K) of the
infinite series expansion of the exact entropy in Eq. (3) and (4).
The degree of approximation is determined by the number of
terms retained in the entropy functional.

Limiting the basic cluster size thus leads to truncation error. The
series given in Eq. (3) and (4) indicates that it is possible to modify
the coefficient (that is the multiplicity) of the term corresponding
to the basic cluster in a particular CVM approximation to account
for the truncation error and reproduce the accurate value of some
desirable feature such as the critical transformation temperature
obtained either from MC simulation or from a higher order approx-
imation of CVM. We shall apply this approach to fcc alloys to cor-
rect the CVM entropy functional for the TO approximation by using
the best known results. We note that no modification of the mul-
tiplicity occurring in the expression for enthalpy is required since
there is no truncation of that expression.

There are four invariant temperatures of interest in fcc phase
separating and ordering systems, namely (i) consolute temperature
for phase separation, (ii) critical temperature for A1$ L10 order-
ing, (iii) critical temperature for A1 M L12 ordering and (iv) triple
point for A1, L10 and L12 equilibrium. There are two basic clusters
in TO approximation of CVM for fcc, namely tetrahedron and octa-
hedron. Multiplicities of these two basic clusters will be modified
to best fit the 4 special temperatures in a least squares optimiza-
tion. For this purpose, we define a merit function v2

Tc
as

v2
Tc
¼
X

i

TM�CVM
c;i � Texact

c;i

Texact
c;i

 !2

ð7Þ

where the index i runs from 1 to 4 and corresponds to the four spe-
cial temperatures mentioned above. In this, TM�CVM

c represents the
specific temperature of interest obtained by modifying the multi-
plicity of basic clusters in the CVM entropy functional whereas
Texact

c refers to its exact/best known value. Minimization of the merit
function with respect to the multiplicities of the tetrahedron (mT)
and octahedron (mO) clusters will provide optimum values of mT

and mO. Since analytical derivatives of the merit function with re-
spect to these multiplicities are not readily available, we shall use
the conjugate gradient algorithm suggested by Powell [16] for the
minimization, as it does not require derivatives. It may be noted
that Kikuchi–Barker coefficients [3] of subclusters will also get
modified owing to the variation of mT and mO as shown in Table 1.
There are two ways in which multiplicities can be modified: (i)
modifying multiplicities of the basic clusters only (henceforth re-
ferred to as M-CVM-1) and (ii) modifying multiplicities of the basic
clusters along with those of clusters completely inside one of the
two basic clusters (that is, non-overlapping clusters) with a similar
factor so that their K–B coefficients remain zero (henceforth re-
ferred to as M-CVM-2). The number of independent variables is
two in both the cases. It may be noticed that M-CVM-1 will be more
computationally intensive than M-CVM-2 due to 5 additional
partial entropy terms appearing in the entropy functional.

In order to compare the results of M-CVM calculations with ex-
act (or more accurate) values, we have performed MC simulations
and obtained values of enthalpies at various temperatures and
compositions for both ordering and phase separating systems. All
the simulations were performed on a 163 MC cell (having a total
of 16,384 sites). In each case, the first 1000 MC steps per site
(MCSS) were discarded. Averages were taken over the subsequent
4000 MCSS, each of which was separated by 2 MCSS to ensure
uncorrelated equilibrium configurations.

Fig. 1. Tetrahedron (1234) and octahedron (123567) clusters in an fcc unit cell
[15].
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