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a b s t r a c t

The asymptotic discrete expansion method is used to construct the initial yield surface of periodic 2D
trusses of beams and the evolution of the yield surface with ongoing hardening. It allows simulating
the elastoplastic homogenized response of such lattices subjected to multiaxial loadings. The proposed
methodology is quite general, as the representative unit cell includes internal nodes and no assumption
of uniform deformation is needed. We determined the effective elastoplastic response for the case of
stretching dominated lattices without considering bending effects. This methodology has been
implemented in algorithmic format in a dedicated code as a user oriented subroutine in finite element
calculations, allowing the analysis of a large variety of new 2D lattices. Applications to the conceived
Octagon-Mixed, asymmetric and star-square lattices illustrate the powerfulness of the proposed method.
The homogenized stress–strain evolutions over loading unloading uniaxial and biaxial cycles are in good
agreement with those obtained by finite element simulations performed over complete 2D lattices.

� 2013 Elsevier B.V. All rights reserved.

Table of symbols

We use a vector notation for tensors, which are represented by
boldface symbols. A superscript trial means that we consider the
trial function and a subscript n or n+1 refers to step n or nþ 1, while
a subscript r indicates the reference to a reduced matrix.

_ab flow rate of the beam b

dib translation parameter of the cell

dE½ �n strain tensor rate at step n, vectorial form
dR½ �n stress tensor rate at step n, vectorial form
dr½ � vector of the stress rate drb of the beam b
dre½ � vector of the elastic rate drb

e of the beam b
drc
� �

vector of the projection of the trial stress on the
yield surface

EðbÞ end node of the beam b
Es elastic modulus of the beam material
E½ � homogenized strain tensor, vectorial form
ee½ � strain vector eb

e of the beam b
ep
� �

plastic slip vector eb
p of the beam b

eb director of the beam b

eb? tangent vector of the beam b
ki local cell coordinates
ek

i
basis of the lattice coordinates

F½ � vector of the forces Fb acting on each beam b of
the reference cell

f½ � vector of yield conditions f b of the beam b
g Jacobian of the change of variables function R kið Þ
c½ � vector of the plastic flow rates cb of the beam b
H½ � diagonal matrix of plastic modulus Hb of beam b

kl beam stiffness in traction
kf beam stiffness in bending
K½ � homogenized stiffness matrix
Kt½ � tangent matrix
Kp
� �

plastic matrix stiffness
Ke½ � elastic matrix stiffness
Kc
� �

r
matrix used for the calculation of c½ �r

Lb length of beam b

Mi moments at beams extremities

n number of the beams in a cell
OðbÞ origin node of the beam b

/i rotation at node i

Qp
� �

matrix relating the homogenized stress R½ � to the
microscopic beam stress r½ �

Qe½ � matrix relating the forces vector on a cell F½ � to
the homogenized strain E½ �
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q� relative density
R kið Þ change of variables function from kið Þ to xið Þ
S½ � compliance matrix

Si homogenized force vector associated with
direction ek

i

Tb force vector on beam b

r½ � vector of the stress component rb of the beam b

R; R½ � homogenized stress tensor, respectively in
tensorial and vectorial form

Rn½ � normalized stress tensor by s0, vectorial form
s½ � vector of deformation resistance sb of the beam b

s0 initial yield limit conditions of the beams

sgnðrÞ½ �trial
nþ1 diagonal matrix of the sign of the vector r½ �trial

nþ1

t beam’s width
ui displacement of node i

v i integer associated with real ki

vi virtual velocity of node i

wi virtual rotational velocity of node i
n½ � diagonal matrix relation between drc

� �
and dre½ �

1. Introduction

The advent of new means of production, such as rapid prototyp-
ing, allows to obtain new structured materials having a complex
cellular geometry based on repetitive lattices of beams. This has
renewed the interest for the study and optimization of lattices of
beams and their homogenized mechanical properties, especially
the yield resistance and strain hardening behavior. For example,
Zhang et al. [25] have designed two new lattices, called the
Si-Square and the N-Kagome. For designers wishing to obtain
new custom-oriented materials with specific mechanical proper-
ties, one must accompany the development of manufacturing
methods by efficient calculation methods borrowing from mechan-
ical homogenization, Doyoyo and Hu [11]. There are several
specific applications using the domain of plastic deformation of
beams lattice. For example, the energy absorption property of
metallic foams, usually modeled by a lattice of beams, are used
in case of car crash, Banhart [3].

The material strength of architectured materials has been the
topic of several studies related to either their elastic strength, or
to their non-linear elastoplastic behavior. The choice of method
of analysis of such lattices in the plastic range is especially guided
by the nature and type of lattice under consideration. Several
classification methods exist in the literature: Deshpande proposed
to classify lattices in either stretching dominated or bending
dominated lattices Deshpande et al. [7], considering that beams
are working either in tension–compression, also known as ‘‘direct
action mechanism’’, or in bending, Christensen [4], Mohr [18].
The elastic strength of beam lattices has been considered by
various authors: Gibson and Ashby [15] analysed foams (bending
dominated,) with the relative density as the dominant criterion
Demiray et al. [5], Sullivan et al. [21] and Kim and Al-Hassani
[17] with a more numerical or analytical approach, Florence and
Sab [14] with an energy homogenization method, Deshpande
et al. [6] and Wang and McDowell [23] with various stretching
dominated lattices, and Doyoyo and Hu [12] studied the octet lat-
tice. The stretching dominated lattices were proved to be much
stronger than bending governed lattices in Deshpande et al. [7];
this raises the interest of this material as a substitute for metallic
foams in lightweight structures. More recently, the initial yield
surface for 2D truss-lattice materials under biaxial loading was
investigated by Alkhader and Vural [1], based on FE analyses and

analytical techniques relying on an energy criterion for orthotropic
materials. The extended finite element method is used in Zhang
et al. [24] for the elastoplastic analysis of periodic truss materials
in the small strain regime. Multiscale base functions are con-
structed to capture the small scale heterogeneities of the unit cells;
this local information is then brought to the upper macroscopic
scale to perform structural calculations. The mechanical properties
of micro-lattice structures subjected to normal stresses are evalu-
ated in Ushijima et al. [22], based on an analytical method relying
on classical beam theory. The yield surface is determined under an
external biaxial loading state.

The investigation of the stress–strain relationships of beam lat-
tices in the plastic range is more involved. The classical criteria of
continuum mechanics do indeed not allow to describe the nonlin-
earities in the plastic range Fan et al. [13]. The effective behavior of
three different lattice materials endowed with cubic symmetry has
been studied by means of analytical and numerical techniques in
Park et al. [20]. A multiscale finite element method was developed
by Zhang et al. [24] to analyse the elastoplastic small strain
behavior of 2D periodic lattices. A continuum mechanism based
multi-surface plasticity model has been introduced by Mohr [18]
to simulate the mechanical behavior of 2D or 3D stretching domi-
nated lattices. This method has been extended later by Fan et al.
[13]; this model however relies on an underlying hypothesis of
uniform deformation of the cells (see Fig. 10). This hypothesis is
not necessary true in the case of lattice with internal nodes (in
the unit cell), even if the lattice is stretching dominated.

In the present work, we develop the discrete asymptotic
homogenization method for the construction of the initial yield
resistance domain and the stress–strain relation accounting for
ongoing hardening. As one shall see, the main advantage of the
proposed method is its ability to handle lattices presenting a
non-uniform deformation due to the existence of internal nodes
within the reference unit cell.

This contribution is organized as follows: in Section 2, we
briefly recall the background behind discrete homogenization, its
adaptation in view of the construction of the initial yield domain,
and we expose the set of basic equations for the update of the plas-
tic variables in presence of hardening. Applications and examples
that illustrate the proposed methodology are given in Section 3,
constructing first the initial yield domain for two classical lattices,
the triangle and the hexagonal lattice, with bending or extension as
a dominant deformation mode respectively. The obtained homog-
enized results serve the purpose of validating the calculation
method of the initial yield domain. The proposed algorithm is next
applied to three lattices exhibiting a non-uniform deformation: the
octagon-mixed lattice, the asymmetric lattice and the square-star
lattice. The obtained homogenized elastoplastic responses are val-
idated by comparison with finite element simulations performed
over entire lattices. Finally (Section 4), a summary of the main
results and a few perspectives are given.

2. Theory

2.1. Summary of the discrete homogenization theory

2.1.1. Description and parametrization of the lattice
For a repetitive truss-like material, the beams are parameter-

ized as pictured in Fig. 1. One shall notice that the extremity node
EðbÞ is necessarily associated to the node numbered globally with
the set of integers ki ¼ v1 þ d1b;v2 þ d2b

� �
. In most cases, the

extremity node belongs to an adjacent cell, which means that the
integers dib describing the shift of this node to an adjacent cell
belong to the set f0;1;�1g as described in Fig. 2. Note that due
to the assumed periodicity, the infinite truss is built from the rep-
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