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a b s t r a c t

We use molecular dynamics simulations to delineate crack propagation speed as a function of the crack
length and the axial prestrain in a single layer graphene sheet. A covalent bond between two carbon
atoms is assumed to break when the bond length has been stretched by 100%. For a pristine single layer
graphene sheet the maximum axial force is attained at a nominal axial strain of 15.5%. A pristine
graphene sheet is first deformed in tension in the armchair direction to the desired value of the axial
strain, and then one or two cracks are simultaneously inserted in it at central locations by breaking
the bonds. Five such problems have been studied with four different values of the axial prestrain up to
15.3%. For each problem, crack-tip speeds are found to reach steady state values as the crack elongates.
The steady state crack speed increases with an increase in the axial nominal prestrain. The crack
propagation is found to be stable in the sense that the value of the J-integral increases with an increase
in the crack length. For the same normalized crack length the value of the J-integral increases with an
increase in the nominal axial prestrain.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Single layer graphene sheets (SLGSs) and nano-composites with
graphene sheets as reinforcements have in general superior
mechanical [1], thermal [2], and electronic [3] properties than
many other monolithic and composite materials, and have poten-
tial applications in nano-electronic devices [4,5]. Needless to say,
the fracture of graphene plays a significant role in designing
graphene based materials and structures. Several authors [6,7]
have used linear elastic fracture mechanics approach to investigate
crack initiation and propagation in SLGSs even though the mechan-
ical response of a SLGS may be highly nonlinear (see e. g., [8]). Xu
et al. [7] used a coupled quantum/continuum mechanics approach
to study crack propagation in armchair and zigzag SLGSs with
initial cracks perpendicular to zigzag and armchair edges. The
crack growth was found to be self-similar in zigzag sheets but
irregular in armchair sheets. The critical stress intensity factors
were found to be 4.21 MPa

p
m and 3.71 MPa

p
m in zigzag and

armchair graphene sheets, respectively.
The J-integral (e.g., see [9]), defined below by Eq. (1), is gener-

ally used as a fracture characterizing parameter in linear elastic
fracture mechanics.

J ¼
Z

C
Wdy� rijnj

@ui

@x
dC

� �
ð1Þ

Here W is the strain energy density, rij and ui are the Cauchy
stress and the displacement components, respectively, with re-
spect of rectangular Cartesian coordinate axes, nj is the component
of the unit outward normal to the closed contour C surrounding
the crack-tip, a repeated index implies summation over the range
of the index, and the crack is aligned along the x-axis. A discrete
form of Eq. (1) has been suggested for use at the atomic level by
Nakatani et al. [10] for amorphous metals and by Jin and Yuan
[11] and Khare et al. [12] for graphene sheets. Jin and Yuan [11]
have developed a method to calculate the J-integral in specified
atomic domains and studied stationary cracks in graphene sheets.
Khare et al. [12] used a coupled quantum/molecular mechanical
modeling to estimate the strain energy release rate (SERR) at the
point of crack extension in a SLGS.

For linear and nonlinear elastic materials, the J-integral can also
be computed from the relation

J ¼ �dP
dA

ð2Þ

where P is the potential energy and A the crack surface area (A = at;
a and t are the crack length and the sheet thickness, respectively), or
equivalently from the slope of the potential energy vs. the crack
length curve since the sheet thickness is constant. An advantage
of using Eq. (2) to find J is that no detailed information for the stress
and the strain fields around the crack-tip is needed. Le and Batra
[13] used Eq. (2) to compute the SERR in a graphene sheet with a
single edge crack and deformed in simple tension, and found that
the SERR strongly depends upon the initial crack length. They also
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studied the dependence of the crack speed upon the crack length,
nominal axial strain rate and the number of layers in the graphene
sheet.

Since initial cracks in armchair graphene sheets are perpendic-
ular to the tensile load axis, it is simpler to simulate crack propa-
gation in armchair sheets than that in zigzag sheets. Accordingly,
crack propagation in armchair graphene sheets has been more
often investigated [6,11,12,14].

Here we use Eq. (2) and results of molecular dynamics (MD)
simulations to investigate crack propagation in a pre-strained arm-
chair SLGS as a function of the initial crack length, crack location
and the pre-strain. A crack is assumed to elongate when the bond
length perpendicular to the crack becomes twice of its value in the
initial relaxed and unloaded configuration. It is found that the
steady state crack propagation speed increases with an increase
in the axial nominal prestrain, and the crack propagation is stable
in the sense that the SERR increases with an increase in the crack
length. An interesting result is that for the pristine SLGS the axial
load attains its maximum value at the nominal axial strain of
15.48%. However, the crack propagation is stable in the SLGS pre-
strained up to an axial nominal strain of 15.3%. Two equally long
cracks on the centerline of the SLGS start interacting with each
other when the distance between their tips equals 8

p
3 r0 where

r0 is the distance between two carbon atoms in the unloaded
relaxed configuration.

2. Numerical procedure

2.1. Molecular mechanics potential function

We describe in this subsection the molecular mechanics poten-
tial used in this work. Short-range (or bonded) interactions be-
tween carbon atoms are modeled by the Morse potential, a
quadratic function of the change in cosines of the angle between
bonds, and a 2-fold torsion potential [15,16]; their expressions
are given by Eqs. (3a), (3b), and (3c), respectively, and various
symbols are shown in Fig. 1.

Vbond
ij ¼ De½1� e�bðrij�r0Þ�2; ð3aÞ

Vangle
ijk ¼ 1

2
Kh½cos ðhijkÞ � cos ðh0Þ�2; ð3bÞ

Vtorsion
ijkl ¼ 1

2
Ku 1� cos ð2uijklÞ
h i2

: ð3cÞ

In Eqs. ((3a)–(3c)) and Eq. (4) below De, Kh, Ku, D0, and v are
material parameters. The Lennard–Jones potential given by Eq.
(4) is adopted to describe the van der Waals interactions (long-
range non-bonded interactions) between carbon atoms (e.g., see
[17]).

Vvdw
ij ¼ 4D0

v
rij

� �12

� v
rij

� �6
" #

ð4Þ

Values of material parameters in Eqs. (1) through (4) taken from
Walther et al. [16] and Girifalco et al. [17] are listed in Table 1. The
total potential energy of all atoms in the system is given by:

V ¼
X

i;j

Vbond
ij þ

X
i;j;k

Vangle
ijk þ

X
i;j;k;l

Vtorsion
ijkl þ

X
i;j

Vvdw
ij : ð5Þ

We did not use any cut-off distance, thus interactions among all
atoms in the system were considered.

2.2. Molecular dynamics simulations

MD simulations have been carried out for uniaxial tensile defor-
mations of a pristine armchair 402.52 Å � 398.92 Å SLGS contain-
ing 61,940 atoms with the freely available open-source software,
LAMMPS, [18] in a microcanonical (NVE) ensemble with periodic
boundary conditions. The temperature of the system is controlled
at 0 K using a Langevin thermostat [19]. Initial velocities are ran-
domly assigned to atoms, and they are allowed to relax without
applying external loads for 50 ps using a time step of 1 fs. Subse-
quently, specimens are deformed at the axial strain rate of
108 s�1 by applying axial velocity in the armchair direction to
atoms at the two ends of the specimen as schematically shown
in Fig. 2. To study crack propagation, the pristine graphene sheet
is first pre-strained in the armchair direction to the desired value
of the axial strain, and then either one or two cracks are simulta-
neously inserted in the middle of the sheet by deleting bonds
between atoms as shown in Fig. 3a through Fig. 3e. The crack
length a is given by:

a ¼ ðnþ 1Þd for an interior crack ðcases 1; 4 and 5Þ; ð6aÞ

a ¼ nþ 1
2

� �
d for an edge crack ðcases 2 and 3Þ; ð6bÞ

where n is number of consecutive broken bonds, d ¼ r0

ffiffiffi
3
p

, and r0

equals the distance between adjacent atoms in the relaxed
configuration.

3. Uniaxial tensile deformations of a pristine single layer
graphene sheet

The strain energy due to deformations of the structure is deter-
mined by subtracting the potential energy of the relaxed unloaded
structure from that of the loaded structure. The evolution of the

rij θijk

ϕijkl

(a) (b)

(c)

i

j

k

k

l

i j i j

Fig. 1. Schematic illustration of (a) the bond length, (b) the angle hijk between
adjacent bonds, and (c) the torsional angle /ijkl.

Table 1
Values of parameters in the potential functions.

Interactions Parameters

Bond-stretching De = 478.9 kJ/mol, b = 2.1867 Å�1, r0 = 1.418 Å
Angle bending Kh = 562.2 kJ/mol, h0 = 1200

Bond-torsion Ku = 25.12 kJ/mol
Lennard–Jones D0 = 0.2313 kJ/mol, v = 3.415 Å
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