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a b s t r a c t

This paper presents a computational technique for the topological design of microstructures for function-
ally graded materials (FGMs) with multiple graded properties of bulk modulus and thermal conductivity.
The inverse homogenization method is applied for the design of a series of base cells with two constituent
materials. The topology optimization of microstructures is performed by using the bi-directional evolu-
tionary structural optimization (BESO) method, which imposes a constraint on the effective thermal con-
ductivity. A computationally efficient approach is developed to provide smooth transition between cells
by considering three cells at each stage of the optimization. Numerical examples are presented to dem-
onstrate the effectiveness of the algorithm. The proposed approach could also be used for the design of
FGMs with other functional properties.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

From previously published works on stress distribution on woo-
dy stem of trees (e.g. [1]), it has become evident that biological
materials achieve different properties through changes in their
hierarchical structures in order to adapt to the environmental
stimuli [2]. However, it was not until 1972 when the industrial
benefits of materials with graded functional properties was first
analytically discussed by published papers of Shen and Bever [3]
and Bever and Duwez [4] in 1972. The idea did not receive much
attention until mid-1980s when the manufacturing technologies
allowed the concept to be practically used for industrial applica-
tions. The morphology of primary invented functional graded
material (FGM) consists of embedment of a ceramic phase into a
steel phase with varying volume fractions thereby enabling the
gradation in properties along certain directions. The ceramic phase
acts as a thermal barrier, protecting the metallic phase from corro-
sion and oxidation and the metallic phase strengthens the compos-
ite; hence, demonstrating a multi-functional characteristics within
the thickness of the composite [5].

For materials made of periodic base cells (PBC) the ‘‘inverse
homogenization’’ approach has been introduced by Sigmund
[6,7], which enables topology optimization of the microstructures
for materials with the goal of materials properties at macro-scale
to be improved or tailored for specific functions. Inspired by the
approach, some attempts have been made for development of mul-

ti-functional materials such as materials with prescribed combina-
tions of stiffness and thermal conductivity [8], heat and electricity
transport [9], stiffness and permeability [10] and other multi-phys-
ical properties [11–13].

The common approach in the design of materials with multi-
functional characteristics is to minimize (or maximize) a linear
combination of functional properties [12]. Assuming two func-
tional properties of f1 and f2 for the composite, the optimization
objective function is usually defined by applying some weighting
factors to different parts of the objective functions. By varying
the weighting factors, materials with multiple properties could
be achieved due to the competence of two properties
[9,10,12,14]. However, a drawback of such an approach is that
the equidistant changes in weighting factors do not guarantee
the same variations in physical properties of the designed material
[14]. Apart from the non-linear cross properties of the defined
objective functions, the reason largely attributes to the existence
of many local optima which may cause the algorithms to be unable
to avoid a nearby solution. Therefore, the results are usually ex-
pressed as a generated Pareto front [13–15] which enables a visual
representation of attainable functional properties with respect to
the weighting factors for a particular setting of design parameters.
Consequently, this optimization approach with given weighting
factors, is not appropriate for the design of FGMs for a prescribed
gradient because of the uncontrolled fluctuations of properties of
the generated microstructure.

In the traditional design approach of FGMs, the gradient of a
property was realized by gradually varying the volume fractions
of their constituents [16,17]. The systematic design methods of
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FGMs, utilizing topology optimization techniques have been intro-
duced by Zhou and Li [18,19] and Radman et al. [20]. In those stud-
ies, the microstructures of cellular FGMs was represented with a
series of base cells. Topology optimizaiton aims to find the optimal
topologies of these base cells so that the FGMs exihibit the gradual
varition of a prescribed property.

In this paper, we present a computational technique for the
topological design of microstructures for FGMs with two constitu-
ent phases which possess multiple graded properties, e.g. bulk
modulus and thermal conductivity. It is assumed that the FGM is
composed of a series of base cells and the topology optimization
problem is solved by utilizing the BESO structural topology optimi-
zation technique [21,22]. Instead of assigning fixed weight factors
to different terms of objective function, an optimization problem
statement is defined to maximize one functional property with
the constraint on the gradual change of another functional prop-
erty. To improve the connectivity of adjacent base cells, they are
optimized progressively by considering three base cells at each
stage. Numerical examples show that the approach yields the accu-
rate control of the constraint value and improves the connectivity
of neighboring cells in a more computationally efficient manner.

2. Topology optimization

2.1. Problem statement

By assuming N base cells along the gradation direction of the
FGM as illustrated in Fig. 1, the topology optimization problem
for obtaining materials with maximum stiffness and prescribes
gradation of thermal conductivity and volume fraction can mathe-
matically be defined for the jth PBC as:

Maximize : Kj ð1aÞ

Subject to : kj
c ¼ kj�

c ð1bÞ

Vj ¼
XM

i¼1

xj
iV

j
i xj

i ¼ xmin or 1 ð1cÞ

ði ¼ 1; 2; � � � ; MÞ and ðj ¼ 1; 2; � � � ;NÞ

where M is the total number of finite elements within each base
cell. It is assumed that the base cells are composed of two constit-
uent materials with Young’s modulus and thermal conductivity of
E1 and K1 for material 1 and E2 and K2 for material 2; Vj denotes
the volume (or weight) of material 1 in the jth base cell; Kj is the
bulk modulus of the jth base cell; kj

c and kj�
c are the effective thermal

conductivity and its prescribed value of the jth base cell
respectively.

The design variable xj
i of the ith element within the jth base cell

can take a binary value of either 1 for elements with material 1 or a
small value (i.e. xi ¼ 0:001) for elements with material 2. The local
material of an element within the PBC is assumed to be isotropic,
with the physical property that varies between the properties of
the two constituent phases. For the cases in which the materials

have well-ordered properties (i.e. E1 > E2 and k1
> k2), the follow-

ing SIMP [23,24] interpolation scheme is applied

Dij ¼ xp
i D1

ij þ ð1� xp
i ÞD

2
ij ð2aÞ

kij ¼ xp
i k1

ij þ ð1� xp
i Þk

2
ij ð2bÞ

in which Dij and kij are the elements of stiffness and thermal con-
ductivity matrices respectively and the superscripts indicate the
material numbers; p is the penalty exponent (p = 3 is used). When
the two constituent phases are ill-ordered, (i.e. E1 > E2 and
k1
< k2) the interpolation scheme can be defined as:

Dij ¼ xp
i D1

ij þ ð1� xp
i ÞD

2
ij ð3aÞ

1
kij
¼ xi

k1
ij

þ ð1� xiÞ
k2

ij

ð3bÞ

2.2. Homogenization and sensitivity analysis

For the design of materials microstructures, there is a need for
calculation of the overall properties of composite materials based
on the spatial distribution of constituent phases. For a material
with periodic microstructures, its effective (average) property
could be calculated by using the homogenization theory [25–27].
For example, the homogenized elasticity matrix DH of such materi-
als is expressed as:

DHðx;uÞ ¼ 1
jY j

Z
Y

DðxÞðI� BuÞdY ð4Þ

in which u denotes the displacement field, resulted from the finite
element analysis of the base cell under periodic boundary condi-
tions and equivalent forces that causes uniform unit strains fields
(e.g. f1; 0; 0gT , f0; 1; 0gT and f0; 0; 1gT in 2D cases) within the
base cell; I is the unit matrix; jY j is the total area or volume of
the base cell and B is the strain–displacement matrix. The deriva-
tion of DH with respect to the design variables xi, can be found by
using the adjoint method [22,28] as

@DH

@xi
¼ 1
jY j

Z
Y
ðI� BuÞT @D

@xi
ðI� BuÞdY ð5Þ

Similarly, the homogenized thermal conductivity matrix (kH)
can be calculated as:

kHðx;lÞ ¼ 1
jY j

Z
Y

kðxÞðI� lÞdY ð6Þ

in which l is the induced temperature field resulting from finite
element analysis of the base cell under the periodical boundary con-
ditions and uniform heat flux (e.g. f1; 0gT and f0; 1gT in 2D cases).
The sensitivity of the homogenized thermal conductivity with re-
spect to the design variables can be expressed as [26,29]

@kH

@xi
¼ 1
jYj

Z
Y
ðI� lÞT @k

@xi
ðI� lÞdY ð7Þ

Fig. 1. FGM base cells numbering and design stages.
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