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a b s t r a c t

The main purpose of this work is computational simulation of the basic probabilistic characteristics of the
homogenized tensor for polymer filled with rubber particles. The Representative Volume Element (RVE) of
this composite contains a single spherical particle and composite components are treated as statistically
homogeneous and isotropic uniquely defined by the Gaussian elastic moduli. Probabilistic approach is
based upon the generalized stochastic perturbation technique allowing for large random dispersions for
the input random variables and is implemented using the polynomial response functions recovered via
the Least Squares Method. Homogenization technique consists in equating of deformation energies for
the real composite and artificial isotropic material characterized by the effective elasticity tensor. The cell
problem is solved using ABAQUS� by an application of uniform deformations on specific outer surfaces of
the composite cell and using tetrahedral finite elements C3D4, while probabilistic part is carried out in the
symbolic computations package MAPLE�. The main conclusion coming from the performed numerical
analysis is almost perfect agreement of our mean values with the analytical calculations, dominating role
of the Young modulus of the polymeric matrix and negligible role of the elastic modulus for rubber. We
also notice that the Gaussian character is transferred from the first modulus on the homogenized tensor,
while randomization of the rubber Young’s modulus is negligible. The energy approach will allow for
future applications of more realistic constitutive models of rubber-filled polymers as well as for the RVEs
of larger size – containing an agglomeration of the rubber particles, for instance.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

There is a variety of homogenization techniques leading to a
determination of the effective tensors characterizing the homoge-
neous medium equivalent to the original composite structure
[1–3]. They are based on some analytical bounds or exact
approximations based upon the deformation criteria or the
deformation energy. Analogously, we have numerical approaches
to the homogenization, where we usually solve the so-called cell
problem on the Representative Volume Element (RVE) to predict
the homogenized behavior of the entire composite structure. It is
usually carried out using the Finite Element Method by the straight-
forward spatial discretization of this RVE and the relevant solution
via the displacement or stress-based formulations. Different typical
stress boundary conditions in-between the composite components
and periodicity conditions on external edges of the RVE [4–6] can

be applied in this case. Alternatively, constant deformations on the
RVE’s external boundaries are imposed and we assure their continu-
ity at the interface [7] to calculate effective tensor’s components. The
first approach needs additional spatial averaging of the induced
stresses fields, while the second allows for a direct computation of
the homogenized tensor’s components from the internal energy
accumulated in the RVE as the result of the applied uniform defor-
mation. Composites consisting of polymeric matrix and rubber par-
ticles are a very specific area of engineering, because the particles do
not play the traditional role of reinforcement for the composite’s
specimen. Such composites are frequently called elastomers and a
lot of research attention is focused on their analysis and develop-
ment recently [8–10]; the main propose of rubber filled polymers
is to improve the toughness of the material. Considering further de-
scribed probabilistic methodology one needs to notice a large vari-
ety of the uncertainty sources in elastomeric structures [6].

The uncertainty in the composite’s parameters [4,11,12] essen-
tially does not change the homogenization methods in the sense
that some probabilistic technique needs to be added to the deter-
ministic apparatus to perform randomization of the model. Tradi-
tionally Monte-Carlo simulation in its various implementations
can be used for this purpose to get the statistical estimators of
the effective tensor. Alternatively, the direct integration technique
can be applied, when the analytical approximations for this tensor
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are taken into account as well as using the perturbation or the
expansion-based methodologies. The stochastic perturbation tech-
nique is sufficient to carry out all computations here, because we
study the Gaussian random field of Young’s modulus with no spa-
tial correlations inside the statistically homogeneous components.
However, taking into account possible large random deviations of
these parameters its generalized version is preferred, where any
order of probabilistic Taylor expansion is admissible. Further, we
choose the Response Function Method (RFM) to omit straightfor-
ward partial differentiation of all orders’ equilibrium equations
and we provide the response polynomials relating the internal
energy of the composite with random parameters separately. The
Direct Differentiation Method (DDM) applied frequently in lower
order stochastic techniques is left here to develop the basic equa-
tions of the probabilistic homogenization technique. We employ
directly in our study the deformation energy of polymer–rubber
composite specimen and its probabilistic moments to calculate
probabilistic characteristics of the effective elasticity tensor com-
ponents assuming that the homogenized medium is also isotropic.
It should be underlined that, according to the best knowledge of
the authors, this homogenization method was never tested before
in case of any uncertainty in the composite being homogenized.
Basic deterministic series of calculations are performed thanks to
the FEM system ABAQUS, where cubic RVE with centrally located
spherical rubber particle is subjected to uniform deformations in
the directions parallel to the external edges of this specimen. An
isotropy assumption is well justified here by the cubic shape of
the entire cell, spherical shape of the reinforcing particle and cen-
tral location of the particle’s center in this RVE. An assumption of
the effective macro-isotropy may be relatively easy replaced in
further numerical studies with the orthotropic homogenized
constitutive equation, for instance, as for the fiber-reinforced
structures or, alternatively, to model analogous RVE with the
elliptic reinforcing particles (after significant uniaxial deformation,
for instance). We compare first the effective tensor components
with its other approximations [1] to validate ABAQUS model of
the RVE itself, our homogenization theory and to analyze applica-
bility of the simple algebraic formulas in further engineering
calculations.

2. Homogenization method

Let us consider a statistically heterogeneous and bounded con-
tinuum X � R3 with no initial stresses and strains. Elastic proper-
ties and geometry of X (see Fig. 1) may be treated as design
random parameters and they result in random displacement field
ui(x; x) and random stress tensor rij(x; x) satisfying linear elastic-
ity elliptic boundary-value problem. Let us assume that there are
non-empty subsets of external boundaries of the domain X,

namely @Xr and @Xu, where the Dirichlet and von Neumann
boundary conditions are defined.

Contrary to the deterministic case study and also random situ-
ation, where perturbation-based technique is used in its Direct Dif-
ferentiation Method version, now we need to solve the whole set of
the boundary value problems with the same boundary conditions
and with additionally modified input parameter b � b(a), a = 1,
. . . ,n. We look for the set of solutions to the boundary-differential
equation systems describing static equilibrium around the mean
value of this parameter, so that

rðaÞij ðxÞ ¼ CðaÞijklðxÞe
ðaÞ
kl ðxÞ; ð1Þ

eðaÞij ðxÞ ¼
1
2

@uðaÞi ðxÞ
@xj

þ
@uðaÞj ðxÞ
@xi

 !
; ð2Þ

rðaÞij;j ðxÞ ¼ 0; ð3Þ

uðaÞi ðxÞ ¼ ûiðxÞ; x 2 @Xu; ð4Þ
rðaÞij ðxÞnj ¼ ~ti; x 2 @Xr: ð5Þ

We follow variational formulation, also as the finite set of inte-
gral equations, to get an appropriate numerical solution for the
strain energy in terms of the Finite Element Method. It yieldsZ

X
CðaÞijkle

ðaÞ
ij deðaÞkl dX ¼

Z
@Xr

~tiduðaÞi dð@XÞ; ð6Þ

where the left hand side of Eq. (6) corresponds to elastic behavior of
the structure and the RHS is equivalent to the stress boundary con-
ditions applied. It needs to be mentioned that indexing with respect
to the RFM should be added to the computational domain X as far
as stochastic shape sensitivity is to be modeled; the corresponding
extension to @Xu, @Xr and additional conditions may reflect an
uncertainty in a structure external boundary.

Determination of the effective material tensor needs the strain
energy of the heterogeneous medium

UðaÞ ¼ 1
2

Z
X

CðaÞijkle
ðaÞ
ij eðaÞkl dX: ð7Þ

The homogenized medium is a linear and isotropic one, which
accumulates the same amount of energy having effective elastic
characteristics’ series Cðeff ÞðaÞ

ijkl , so that we compare this against the
energy stored in the homogenized medium
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Z
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ij eðaÞkl dX ¼ UhomðaÞ ¼ 1

2

Z
X
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ij ehðaÞ
kl dX; ð8Þ

where ehðaÞ
ij denotes the strain tensor adjacent to the homogenized

equivalent medium.
Further, we set specific boundary conditions to the composite

RVE to make this comparison, which correspond to the uniform
expansion of this cube with the dimensions 2d � 2d � 2d, i.e. [7]

ex1
ij : u1ðd; x2; x3Þ ¼ d1; u2ðx1; d; x3Þ ¼ 0; u3ðx1; x2; dÞ ¼ 0;

u1ð�d; x2; x3Þ ¼ �d1; u2ðx1;�d; x3Þ ¼ 0; u3ðx1; x2;�dÞ ¼ 0;

ð9Þ
as well as

ex2
ij : u1ðd; x2; x3Þ ¼ 0; u2ðx1; d; x3Þ ¼ d2; u3ðx1; x2; dÞ ¼ 0;

u1ð�d; x2; x3Þ ¼ 0; u2ðx1;�d; x3Þ ¼ �d2; u3ðx1; x2;�dÞ ¼ 0:

ð10Þ

According to the definition one writes

ex1
ij ¼

d1

d
; ex2

ij ¼
d2

d
: ð11Þ

Fig. 1. Periodic two-component composite idealization.
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