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a b s t r a c t

Optical emission spectroscopy (OES) data were used to construct neural network models

of plasma etch process. According to a statistical experiment, actinomeric OES data were

collected from the etching of oxide thin films in a CHF3–CF4 magnetically enhanced reactive

ion etching system. The etch responses modeled include an etch rate, a profile angle, and an

etch rate-nonuniformity. Principal component analysis was applied to reduce the dimen-

sionality of OES data. Three data variances adopted are 98, 99, and 100%. For each data

variance, backpropagation neural network models were constructed. The training factors

optimized by genetic algorithm include the training tolerance, magnitude of initial weight

distribution, number of hidden neurons, and two gradients of activation functions in the

hidden and output layers. The presented models demonstrated much improved predictions

over the previous ones. The improvements were 43, 61, and 17% for the etch rate, profile

angle, and etch rate-nonuniformity models, respectively.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Plasma etching is a key means to etch fine patterns in
manufacturing integrated circuits. Many process parame-
ters are involved in etching thin films such as an etching
of silicon oxynitride film in an inductively coupled plasma
(Kim et al., 2005a,b). Certain variations in them can cause a
fault in plasma. To maintain a device yield and an equip-
ment throughput, plasma processes need to be stringently
monitored, diagnosed, and controlled. For these purposes,
neural networks have been widely used to build a prediction
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model. Applying neural networks to model the plasma-
processed data is advantageous in that they can learn complex
input–output relationships accurately while producing a quick
response. During a plasma etching, a variety of data might be
acquired, including external process parameters, in situ diag-
nostic data, or surface film measurements. These data have
been used to construct three types of neural network models.
The first type of model attempted to relate the variations in
external process parameters such as a radio frequency power
to those in film measurements such as the etch rate. In the
context of coatings of thin films or discharge processes, this
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type of model has been used to model a photoluminescence
intensity in a pulsed laser deposition process (Ko et al., 2005),
a weld bead geometry in pulsed gas metal arc welding pro-
cess (Manikya Kanti and Srinivasa Rao, 2008), a bulk behavior
of coatings (Lee et al., 2007), a removal rate along with tool
wear in electrical discharge processes (Mandal et al., 2007),
or a plasma etching of silicon oxynitride (Kim and Lee, 2005).
The second type of model was constructed to predict the varia-
tions in an in situ process parameter with the other ones (Hong
and May, 2004). This model can be effectively used to monitor
the states either in in situ process parameters or equipment
chambers. The last, third type of model was used to learn cer-
tain relationships between X-ray photoelectron spectroscopy
and etch surface roughness (Kim and Park, 2006). This type of
model can be utilized to identity an anomaly in plasma states.
The most popular in situ diagnostic instrument is an opti-
cal emission spectroscopy (OES). The OES provides detailed
information regarding a number of radicals involved in plasma
etching or deposition. This information was utilized to detect
an etch endpoint (Stevenson et al., 1998). Using the backprop-
agation neural network (BPNN) (Rummelhart and McClelland,
1986), several attempts were also made to construct a control
model of OES in a MERIE (Kim et al., 2005a,b) or a reactive ion
etching (Hong et al., 2003) process. In these works, a principal
component analysis (PCA) (Jackson, 1991) was used to reduce
the dimensionality of OES input patterns. Rather than the
reduced data, the nonreduced data were used and the result-
ing models demonstrated an improved prediction over those
built with the reduced data (Kim et al., 2005a,b). However, this
work is limited in that the effects of all possible training fac-
tors involved in the BPNN training could not be optimized.
This is mainly attributed to the huge input dimensionality of
OES data. As the effect of all training factors is optimized, an
improved OES model may be achieved.

In this study, a prediction model of OES data was con-
structed. The presented models are clearly differentiated from
the previous ones (Kim et al., 2005a,b) in that they were opti-
mized as a function of all training factors. The optimization
was conducted by combining the PCA, BPNN, and genetic algo-
rithm (GA) (Goldberg, 1989). The GA was used to search for an
optimized set of training factors. Depending on the data vari-
ance, three types of models were constructed and compared to
the previous models. The presented technique was evaluated
with the etching data.

2. Experimental details

Fig. 1 shows a schematic of a MERIE system used in the
etching. The OES system consisted of a manochromator (M),
a photomultiplier tube (PMT) and a photocounting system.
The photocounting system again comprised a discriminator, a
multi-channel scaler, a system controller (SC), and a personal
computer (PC). The remaining HVS represents a high voltage
supply. The emission signal delivered to the manochroma-
tor is decomposed with a resolution of 2 nm using a grating
of 1200 grooves/mm. The decomposed signal is then fed to
the PMT through a slit of 50 �m diameter. Optical emission
spectra were collected over a wavelength between 2276 and
7918 nm with 2.5 nm resolution. An example of OES data is

Fig. 1 – Schematic of a magnetically enhanced reactive ion
etch system.

shown in Fig. 2. The data were collected at 300 W RF power,
50 Torr pressure, and 80 and 40 sccm for CHF3 and CF4 flow
rate, respectively. In the context of plasma modeling, OES
data is significant since they can provide detailed intensities
for all possible radicals, serving as etchants or precursors to
deposition. Moreover, their distributions are unique to each
of process conditions. These two features make them attrac-
tive for plasma modeling. To maintain an actinometry, the raw
OES data shown in Fig. 2 were divided by Ar intensity peaked
at 7504 Å. The resulting data were also included in Fig. 2 and
these were used as an input pattern in training neural net-
work.

Test patterns were fabricated on (1 0 0) oriented silicon (Si)
substrates. Oxide films of about 900 nm thick were deposited
on chemically pre-cleaned (1 0 0) silicon by reacting SiH4 with
N2O in a plasma-enhanced chemical vapor deposition reactor
at 400 ◦C temperature and 3 Torr pressure. Using a spin coater,
1.02 �m thick photoresist-film was coated at the RPM of 4000,
and subsequently soft-baked for 90 s at 90 ◦C temperature on
the hot-plate in a track system. Photoresist patterns (thus
holes) of equal lines and spaces were formed using an i-line
Nikon stepper. Developed hole samples were subsequently
hard-baked at 120 ◦C for 30 min in a convection oven.

Fig. 2 – An example of actinometric OES data.
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