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The biaxial Poissons ratio in the nonlinear elastic theory is an important material parameter. We report
here an accurate and efficient means of calculating the nonlinear elastic response of thin, homogeneous
films to biaxial strain in arbitrary planes using a continuum-elasticity theory model. The general analytic
expressions were derived for the elastic energy and the Poissons ratio under biaxial strain for cubic crys-
tals. The biaxial Poisson’s ratio did not remain constants, but showed a linear relationship with strain
when second- and third-order elastic constants are considered. The expressions were verified with sim-
ulated biaxial Poisson’s ratio and elastic energy of copper by density-functional theory calculations for
three high symmetry planes.
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1. Introduction

The energy associated with elastic distortions plays a major role
in the stability of heterostructures [1,2], nanostructures [3], and
thin metallic films [4] as well as in the phase stability in metal
superalloys [5]. In these structures which are the building blocks
of integrated circuits and magnetic disks, large stresses may be
present, and nonlinear elastic effects need to be taken into account.

Most of the strain energy is stored in the overlayers that are al-
ready bulk-like, and the total strain energy can be estimated by
studying the biaxial deformations [6,7] of bulk materials. It has
been argued that deviations from bulk elastic behavior play a nota-
ble role only in films that are less than several monolayers thick.

It is important to understand nonlinear elastic properties of thin
films [8,9], because modeling deformations larger than a few per-
cent that are common in epitaxial and pseudomorphic overlayers,
requires going beyond linear elasticity theory. The linear elastic en-
ergy and the Poisson ratio under biaxial strain have been previ-
ously studied by Hammerschmidt et al. [7]. However, non-linear
elastic effects have not been well established.

In this paper, the nonlinear elastic properties of materials with
cubic symmetry under biaxial strain were studied in arbitrary
planes. The strain tensor was introduced, and the elastic energy
and the biaxial Poissons ratio for cubic systems were determined
based on continuum-elasticity theory (CET). Finally, the expres-
sions were verified with simulated biaxial Poisson’s ratio and
elastic energy of copper by density-functional theory (DFT)
calculations for three high symmetry planes.
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2. Analytical expression for nonlinear biaxial strain-tensor

For a solid body subject to a finite deformation, the configura-
tion of a material point in the system after deformation is
represented as Y = Y(X), where X is the initial configuration at
the equilibrium state. The deformation gradient is defined by the
following expression
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where i and j=1, 2, 3 are the indices of the Cartesian coordinates.
Then the Lagrangian strain tensor is defined as follow:
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where [ is the unit matrix. The internal energy is related to the
Lagrangian strain through Taylor series expansion in terms of the
strain tensor and the expression to the third order is as follow:
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where Cyjy and Cyymn are the second and third order elastic con-
stants (SOECs and TOECs). Often, the symmetries of crystal struc-
tures can be used to simplify the expression given above by
specifying the strain tensor in the canonical coordinate system of
the crystal. The elastic response of a medium under external stress
is determined by minimizing the free energy F with respect to the
directions with no external stress. The general analytic solutions
for the yield of isotropic and one-dimensional (uniaxial) external
deformations (Fig. 1a) are the bulk modulus and Poisson ratio,
respectively.
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Fig. 1. Schematic diagram to illustrate the uniaxial and biaxial strains. The dark
gray cube is unstrained with side length L, and the light gay is strained. (a)
Expanded along the x direction by L due to an externally applied uniaxial tension,
and contracted in both y and z directions by L', and the uniaxial Poisson ratio is
defined as v = AL'/AL. (b) Expanded along the x and y direction by L due to an
externally applied biaxial tension, and contracted in z directions by L', and the
biaxial Poisson ratio is also defined as v = AL'/AL.

A biaxial Poisson ratio can be defined for isotropic two-
dimensional deformations (Fig. 1b). Similar to the uniaxial case,
the elastic relaxation upon biaxial strain in a plane (hkl) can be
given in an orthogonal coordinate system with two perpendicular
axes (eq,e;) in the strain-plane (hkl) and a third (e;) along the [hkI]
direction. The relation to the canonical coordinates can be given by
a matrix T = (e1,e,,e3)"". The biaxial Lagrange strain tensor 1, in
this coordinate system [7] is
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where ¢ is a nonzero strain component, x is the biaxial Poissons
ratio. The strain tensor #, can be inserted into the expression for
the free energy (Eq. (3)) after transforming #, from the coordinate
system of the deformation to the canonical coordinate system of
the crystal.

This is advantageous as it allows using the well-known
structure-specific expressions of the free energy in canonical
coordinates. The matrix T transforms the strain tensor 77, expressed
in terms of {e;,e;,e3} to the corresponding strain tensor # in
canonical coordinates {e, ey, e;}. This yields the free energy

F(in) = F(TT"). (5)

Together with the structure-specific free energy and the values
of the elastic constants, Eq. (5) allows us to calculate the elastic
response upon biaxial strain in arbitrary planes by determining
the minimum of the elastic energy with respect to the biaxial
Poisson ratio:
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Hence, whenever the terms Poissons ratio or biaxial Poissons ratio
are used, they actually refer to the engineering Poissons ratio which
is represented by engineering strain.
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The engineering biaxial Poissons ratio is expressed as follow
[10]:
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With this scheme Marcus et al. derived the elastic energy of cu-
bic systems upon biaxial strain analytically for low-index planes
and numerically for several high-index planes [11]. Without loss
of generality, an orthonormal deformation coordinate system that

allows easy derivation a general transformation matrix T, similar to
that used by Lee [12,13], can be chosen:
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This defines the transformation matrix T, which allows us to
transform the strain tensor from the coordinate system of the
deformation to canonical coordinates
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Note that the cubic symmetry of the crystal lattice enters the
transformation matrix in the definition of the orthonormal
deformation coordinate system in Eq. (9). In this way, the canonic
representation of the strain tensor as given in Eq. (10) holds only
for materials with cubic symmetry.

In the case of the cubic system, the elastic energy and the
Poisson’s ratio for the (hkl) plane can be derived analytically. With
the elastic energy of Eq. (3) and the canonic strain tensor of Eq.
(10), the elastic response of a system with cubic symmetry can
be obtained by minimizing the elastic energy with respect to the
biaxial Poisson’s ratio x according to Eq. (6). The resulting Poisson
ratio and elastic energy upon biaxial strain in the (hkl) plane de-
pend only on the elastic constants and the orientation,
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where,
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We have chosen x > 0 for a normal solid. The solution with a
positive square root corresponds to a negative x so it is discarded
in Eq. (11). The analytical expressions above provides an efficient
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