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a b s t r a c t

The effect of vacancy-type defects on the vibrational properties of graphene nanoribbons has been
discussed numerically. We have computed the phonon density of states and mode pattern over a broad
range of vacancies using the forced vibrational method which is based on the mechanical response to
extract the pure vibrational eigenmodes by numerical simulation. We find that the armchair-edge and
the vacancy-type defects break down the phonon degeneracy at the U point of the LO and TO mode,
distort and shift down the phonon density of states significantly. The phonon density of states in the
armchair graphene nanoribbons with vacancy-type defects show the remarkable increase in the low
frequency region induced by their defect formations. The mode patterns obtained by our numerical
experiments reveal that the in-plane optical phonon modes in the K point are localized near the arm-
chair-edges which are in good agreement with the high intensity D peak in the Raman spectra originate
from the armchair-edge. The simulation results also demonstrate that the lattice vibrations in the defec-
tive graphene nanoribbons show the remarkably different properties such as spatial localizations of
lattice vibrations due to their random structures from those in the perfect graphene nanoribbons. These
differences manifest themselves in the predicted temperature behavior of the constant-volume specific
heat capacity of both structures.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Since a few years, a tremendous amount of attention has been
focused on the graphene and graphene-related materials because
of fundamental physics interests and promising applications
[1–7]. A terminated strip of graphene, so-called graphene nanorib-
bons (GNRs), which shows finite energy band gap due to quantum
confinement of electrons has aroused special interest recently. The
quasi one dimensional (1D) GNRs have edge structures specified
either armchair or zigzag. Narrowing the width of armchair GNRs
(AGNRs) results in a transforming from semi-metallic to semicon-
ducting, especially below 10 nm [8,9]. If the width of the armchair
GNRs is reduced to 1–2 nm, a discrete quantum levels between the
conduction and valence band (energy gap) similar to the band gap
of Si, InP, or GaAs can be produced [10]. Recently, GNRs with con-
trolled edge orientation have been fabricated by scanning tunnel-
ing microscope (STM) lithography, and opening of energy gaps
up to 0.5 eV in a 2.5 nm wide AGNR is reported [11]. The quasi rel-
ativistic behavior of electrons and the finite energy gap by varying
the ribbon widths make GNRs an attractive candidate for the future
electronic devices.

The transport of valence electrons in graphene-related materi-
als have been significantly affected by the lattice vibrations due
to a strong electron–phonon coupling [12]. Previous theoretical
studies [13,14] predict that the phonon modes are thermally
excited at room temperature and that the transport properties of
GNRs depend on the nature of edge-phonon modes in addition to
the roughness of the ribbon edge [15]. The investigation of the
vibrational properties of graphene nanoribbons is thus of funda-
mental importance for the electron transport in electronic devices
and of great general interest for the physical understanding of
those structures.

From a practical point of view, when nanoribbons are fabricated
experimentally, they will have some structural defects. Vacancy
and adatom-vacancy defects are among the most probable ones
[16]. Even small concentrations of vacancy-type defects in graph-
ene-based 1D and 2D nanostructures may alter the vibrational
properties significantly and thus change their optical absorption,
low temperature specific heat and transport properties. So far,
several works have been done on the vibrational properties of
GNRs using various theoretical approaches including force con-
stant fittings [17,18], the continuum model [19], density functional
theory [20,21], and the first-principles calculations [22,23], the
most of which focus on the pristine GNRs only. When defects
present in a system, they may induce the symmetry breakdown
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of elemental topological arrangement, which generate more com-
plex lattice structures. Therefore, first-principles method requires
huge computational resources. These long computational times
and convergence problems in the first-principles calculations limit
the systems of interest to benchmark molecules. However, a signif-
icantly larger scale model is essential for an in-depth understand-
ing of vibrational properties of defective atomic structures.
Therefore, the estimation of the vibrational properties in natural
GNR nanodevices under the free boundary conditions (FBCs) is an
extremely important challenge, especially with complication due
to chemical modifications or dangling bonds at GNR edges. It is
thus crucial to build a reliable model to measure such physical
properties of the defective GNRs or to observe the vibrational mode
directly.

In this work, we present a systematic analysis of defect-induced
vibrational properties of AGNRs under the free boundary condi-
tions. We have employed forced vibrational (FV) method suitable
to treat physical systems proposed by Williams and Maris [24],
which is based on the mechanical resonance to extract the vibra-
tional eigenmodes for very complex and large systems by numer-
ical calculations to describe the change in the phonon density of
states in the presence of vacancy-type defects. The vacancy con-
centration, which is the most important parameter in this study
has been varied over a broad range. In defective cases there may
appear vibrational modes [25,26] lying outside of the allowed
frequency range of the perfect crystal. These are called localized
vibrational modes, or local modes, because the mode energy is
spatially concentrated near the defect site. To show the localized
phonon properties we have calculated the mode pattern of AGNRs
with and without the presence of vacancy-type defects. Moreover,
for the AGNRs, the temperature dependence of the specific
heat capacity is obtained from the phonon density of states includ-
ing the vacancy-type defects and the ribbon width effects. In the
next section, we briefly elucidate the FV method relevant to treat
physical structures, in which we obtain expressions that will be
useful for the calculation phonon density of states and mode
pattern.

2. Forced vibrational method

The FV method is based on the fact that if a periodic external
force with frequency X is applied to a system consisting of N atoms
which are coupled together by linear springs, the response of the
system will be dominated by the eigenmodes with the eigen fre-
quency near to the X. At time t = 0, we prepare the lattice system
with each atom at rest and with zero displacement. In general, the
equation of motion of the systems with the scalar displacement of
the l th mass, ul(t), is:

Ml€ulðtÞ þ
X

l0
/ll0ul0 ðtÞ ¼ 0 ð1Þ

where Ml is the mass of lth atom and /ll0 is the strength of the spring
between the lth and l

0
th atoms. The displacement can be composed

into a set of normal modes according to follwoing equation:

ulðtÞ ¼
X

k

Q kðtÞ
elðkÞffiffiffiffiffiffi

Ml
p ð2Þ

where Q kðtÞ and elðkÞ are the amplitude and the eigenvector of the
normal modes (k), respectively. For t > 0 an external periodic force
F0

ffiffiffiffiffiffi
Ml
p

cos ð/lÞ cosðXtÞ is applied to the each atom l, where F0 is a
constant independent of time and /l is a random quantity. Thus,
for large times the periodic external force excites only those modes
whose frequency is close to X. When we average all possible values
of /l and use the orthonormality of the eigenvectors felðkÞg, the
average value of energy hEi becomes as follows:

hEðXÞi � ptF2
0

8

X

k

dðxk �XÞ ¼ ptF2
0NgðXÞ

8
ð3Þ

where g(X) is the phonon density of states. Therefore:

gðXÞ ¼ 8hEðXÞi
ptF2

0N
ð4Þ

Thus, we can obtain the phonon density of states to carry out
the time development in the presence of the periodic force. More-
over, if the system is driven for a long time, the response will
mainly come from the modes of frequency close to X. If the modes
of frequency around X are localized, the energy distribution of the
system will be inhomogeneous. Since the numbers of excited
modes are small, they will have a very small probability of overlap-
ping. Therefore, any region of high energy density can be assumed
to be caused by single mode. As a result, the displacement ul of the
atoms within a particular localized region should be:

ul ¼ Celðk0Þ=
ffiffiffiffiffiffi
Ml

p
ð5Þ

where C is a constant factor independent of l and elðk0Þ is the dis-
placement pattern or polarization vector of the mode k0. Thus, we
can obtain the mode pattern of the eigenmodes in the system.

3. Computational details

The FV method has been applied to a numerical investigation of
vibrational properties of the pristine AGNR and the defective AGNR
lattice structures. Following previous convention [27–38], the
GNRs with armchair shaped edges on both sides are classified by
the number of dimer lines (N) across the ribbon width, W as shown
in Fig. 1a. We refer to the AGNR with N dimer lines as a N-AGNR.
The relationships between W and N are given by following
equation:

WAGNR ¼
1
2
ðN � 1Þa ð6Þ

where a is the lattice constant of graphene. Barnard and Snook [39]
has shown that the average bond length in a GNR rapidly converges
to the average bond length of a relaxed sheet of graphene when
increasing the number of atoms. In our calculation, the GNR relax-
ation is thus neglected and the lattice constant of a relaxed graph-
ene sheet, i.e., a = 0.246 nm is used throughout this work. The
Brillouin zone of graphene with high-symmetry points such as U,
K, and M points are shown in Fig. 1b. The simulations are performed
on the graphene nanoribbons under the free boundary conditions
(FBCs), for which the width of the sheet is confined to be a finite size
of up to 4 nm (33-AGNR) while the length is considered about
0.12 lm long in the total of 17,474 atoms. The elemental lattice
structure of the model is considered without the strains, torsions
and the surface reconstructions for the simplicity. Vacancies are
introduced randomly into the graphene nanoribbon honeycomb lat-
tices using bond percolation procedures. It is well known that the
bond probability of a percolation network of honey comb lattice
is 65%. Therefore, vacancy concentrations (i.e., defect density) up
to 35% are used in the present simulation. Fig. 1c shows the lattice
structure of the elementary percolation network used in the works.
Only interactions up to the fourth nearest neighbor atoms are used
and the force constant tensor between two carbon atoms is taken
from Jishi et al. [40]. For atoms near an edge, only the force constant
of actual atoms is included in the calculation under the FBC. This is
different from periodic boundary conditions (PBCs). For example,
the leftmost atom in the dashed frame in Fig. 1a is only restored
by its right atoms when it leaves its equilibrium position. In this
case, the force constants are only comprised of its right atoms. For
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