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a b s t r a c t

When determining an effective stress–strain law by means of the representative volume element (RVE)
method, one needs to subject the RVE to the effective strains by appropriate boundary conditions (BC).
Usually, classical BC that prescribe a homogeneous stress or strain field at the boundary or a periodic unit
cell are used. In this work, we discuss generalized BC, which involve the partitioning of the RVE boundary
into n parts. It is demonstrated that the classical BC are contained as special cases, and that the Hill–Man-
del-condition holds for all partitionings.

By a more or less fine surface partitioning, the generalized BC allow for a smooth scaling between the
extremal cases of homogeneous stress or homogeneous strain BC. Further, by an irregular surface parti-
tioning, one can obtain stochastic BC with an elastic stiffness close to the periodic/antipodal BC, but with
a higher resistance against localization. This has been demonstrated by examining a softening example
material. A test of plausibility for a RVE is to apply it to a homogeneous microstructure. Then, the micro-
scale material law should be conducted directly to the macroscale. In case of softening microscale mate-
rials, this test works only for homogeneous strain BC. For homogeneous stress- and periodic/antipodal BC,
localization occurs, accompanied by a drastic deviation from the expected stress–strain curve. From the
generalization, one can derive stochastic BC that combine the moderate elastic stiffness of periodic BC
with the high resistance against localization of homogeneous strain BC.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The micro-scale structure of a material can have a considerable
effect on the material properties as perceived on the macroscale. It
may be the byproduct of a forming or solidification process, be an
inseparable part of the material (e.g., fibers of wood), or it may be
the result of a material design process (micro-structural reinforced
or micro-architectured materials). In order to efficiently examine
the micro–macro interaction, one needs fast, reliable and robust
homogenization methods. These demands can be accounted for
by the representative volume element method. The method con-
sists basically in choosing a representative material sample (step
1), enforcing the average (macro) fields of the independent variable
(e.g., the strains, step 2), solving the boundary value problem (step
3), and averaging the fields of the resulting dependent variable
(e.g., the stresses, step 4). The method allows to obtain estimates
of effective material properties when analytical homogenization
is due to the geometric nonlinear setting or complicated interac-
tions between the constituents hardly possible (e.g. [1]). Here,
the term ‘‘representative’’ is used in an approximate sense as sug-
gested in [15–17], compared to the strict interpretation of [18].

The present work is concerned with step 2, namely how the
average macro-scale field may be imposed most efficiently. Since
RVE are something artificial, there are no natural boundary condi-
tions (BC), except for periodic microstructures. Then, the periodic-
ity prescribes a specific self-interaction of the boundaries. Another
possibility is to prescribe homogeneous fields on the boundary.
Regarding the mechanical material behavior, one may prescribe
either homogeneous deformations ðu ¼ H � x0Þ or homogeneous
stresses ðt ¼ T � n0Þ, see [14]. The latter BC are extremal in the
sense that they result in the stiffest (homogeneous deformations)
or softest (homogeneous stresses) possible RVE, while periodic
BC lie between these extremes. Although the homogeneous defor-
mation BC require, strictly speaking, a prescribed displacement
gradient, we will refer to them in the remainder as homogeneous
strain BC to emphasis the dual character of the pair stresses/strains
and the resulting extremal BC.

Mostly, one of these three classical BC is employed. Due to a
more complicated implementation and problems with RVE locali-
zation, the homogeneous stress BC are much less popular than
the homogeneous strain BC and the periodic BC. Especially the
periodic BC are commonly used, even for non-periodic structures,
due to the absence of other popular BC that lie between the extre-
mal BC. The reason is that it is not easy to give BC of moderate stiff-
ness that comply with the Hill–Mandel-condition [5], which is a
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necessary condition for the RVE to converge to a macroscale material
law as the RVE size is increased [14]. To the best knowledge of the
author, only two other BC of non-extremal stiffness are known,
namely the subspace decomposition of the boundary data, which
consists of enforcing homogeneous displacements in one direction
and homogeneous tractions perpendicular to this direction (or the
other way around, [4]), and the gradual penalization of a deviation
from the homogeneously deformed RVE by spring elements [3].
The aim of the present work is to give generalized BC that comply
with the Hill–Mandel-condition, and enclose the classical BC (Sec-
tion 2). From this generalization, one can construct BC that have
yet unseen properties. The applicability of the generalized BC is
examined for an elasto-plastic matrix inclusion material (Section 3).
We demonstrate that elasto-plastic material homogenization can
benefit from the properties of the generalization, especially when
softening microscale materials are considered (Sections 4 and 5).

1.1. Notation

Throughout the work a direct tensor notation is preferred. Vec-
tors are symbolized by lowercase bold letters, and second-order
tensors by uppercase bold letters. The second-order identity tensor
is denoted by I. A dot represents a scalar contraction. If more than
one scalar contraction is carried out, the number of dots corre-
sponds to the number of contractions, e.g., (a � b � c) � � (d � e) =
(b � d)(c � e)a, a = A � � B.

The position vector of a material point is denoted by x(x0, t),
where x0 indicates the position vector of the same material point
in the reference placement. At t = 0, x = x0 holds. The partial deriv-
ative of a function with respect to t with x0 kept constant is the
material time derivative, indicated by a superimposed dot. The in-
dex ‘‘0’’ indicates that a function or derivative is to be evaluated in
the reference placement or with respect to x0. X denotes the do-
main of the RVE under consideration. A bar denotes the un-
weighted volume average over X.

1.2. List of symbols

X domain of the RVE
@X RVE boundary
@Xi part of @X
k number of surface partitions
n number of discrete points contained in @Xi, referred to

as group size
nmax number of discrete points contained in @X
uabs absolute under-determinacy, uabs = No. of vars. � No. of.

eqs.
urel relative under-determinacy, urel = uabs/No. of vars.
n0 surface normal vector in the reference placement
t traction vector t = T � n0

u displacement vector, u = x � x0

x position vector
H displacement gradient
T first Piola–Kirchhoff stress tensor

2. Generalized boundary conditions

The generalized BC are given by.

� dividing the surface @X of the RVE into k parts @Xi,
� and constraining u on each @Xi by

H �
Z
@Xi

x0 � dA0|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Hi

¼
Z
@Xi

u� dA0: ð1Þ

In the latter equation, one can consider the left handside as the
displacement gradient Hi that is imposed on the surface part @Xi.
After fixing an average deformation H and a surface partitioning,
it can be calculated for each part @Xi of the surface.

One can show that the well known homogeneous strain-,
homogeneous stress- and periodic BC are contained special cases,
resulting from different surface partitionings:

� The homogeneous strain BC require an infinitely fine partition-
ing of the surface, i.e., Eq. (1) must hold pointwise on @X instead
on average. Thus, we drop the integral,

ðH � x0Þ � dA0 ¼ u� dA0: ð2Þ

Comparing coefficients gives

u ¼ H � x0; ð3Þ

which must hold everywhere on @X. This corresponds to the well
known homogeneous strain BC.
� For periodic BC, the partitioning is infinitely fine, but points are

coupled pairwise such that

dAþ0 ¼ �dA�0 ; ð4Þ

holds, where the + and � sign index the two coupled points. Again,
the integral is contracted at the two points,

ðH � xþ0 Þ � dAþ0 þ ðH � x�0 Þ � dA�0
¼ ðuþ � dAþ0 Þ þ ðu� � dA�0 Þ: ð5Þ

With Eq. (4) one can write

H � ðxþ0 � x�0 Þ � dAþ0 ¼ ðuþ � u�Þ � dAþ0 ; ð6Þ

where a comparison of coefficients gives the well known periodic BC,

H � ðxþ0 � x�0 Þ ¼ uþ � _u�: ð7Þ

Further, periodicity requires an RVE shape that allows to fill the
space entirely with instances of the RVE, and a corresponding cou-
pling. However, one may as well apply Eqs. (6) and (4) to RVE that
do not have such a shape, or employ a non-periodic node coupling.
� Homogeneous stress BC are obtained when there is no surface

partitioning at all. Then Eq. (1) becomes with Gauss’s theorem

H ¼ 1
V0

Z
@X

u� dA0: ð8Þ

These, sometimes termed as kinematic minimal BC, correspond to
the homogeneous stress BC. This has been demonstrated by Miehe
[8] (Section 2.4.2), using Lagrangian multipliers to enforce the latter
equation as a weak constraint. A proof of this statement that relies
on the macroscopic stress power is contained in the Appendix.
It is noteworthy that Eq. (8) should always hold, since it is nothing
else but the kinematic coupling between the micro- and macroscale
[10]. One can see in fact that it holds independently of the surface
partitioning. However, if Eq. (8) is the only constraint that is im-
posed on @X, the resulting stresses on the RVE boundary are
homogeneous.

2.1. The Hill–Mandel-condition

The Hill–Mandel condition demands the equivalence of the
stress power as perceived on the macroscale to the integral of
the stress-power over the RVE. For the large strain setting, it can
be written asZ
@X

_~u � tdA0 ¼ 0; ð9Þ
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