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a b s t r a c t

Reactive diffusion is usually explained and simulated for a binary A–B diffusion couple used as a starting
configuration. Various solution concepts for reactive diffusion are shortly discussed. If sharp interfaces
between the developed new and/or parent phases with infinite mobility are assumed and act as ideal
sources and sinks for vacancies, then the local equilibrium conditions at the interface are enforced. This
is pronounced as jump in chemical composition given by a phase equilibrium diagram, and the corre-
sponding local mass balance (conservation) at the interface must be taken into account. This represents
a classical concept. However, there exist two further solution concepts, one working with the thermody-
namic factors and the other one utilizing chemical potentials as unambiguous functions of the chemical
composition. All three concepts are compared based on the solution of the same reference example by
means of finite difference technique. Drastic differences appear between results obtained by the classical
sharp interface concept as well as the chemical potential based concept (both providing identical results)
compared to the use of the thermodynamic factor concept. The analysis of the results of simulations indi-
cates that the solution concept based on thermodynamic factors produces artifacts in the treatment of
reactive diffusion, if the most accurate discretization scheme is used.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction and motivation

Reactive diffusion is understood in the literature, see e.g. theo-
retical treatments in [1–3] or experimental reports in [4,5], as the
formation of one or more new (product) phases between two old
(parent) phases under the assistance of diffusion. Let us assume
as the simplest example a binary diffusion couple with the pure
A-component on the left side and pure B-component on the right
side of an interface as a one-dimensional starting configuration
(coordinate x in the actual configuration). After a certain nucleation
process along the interface, see e.g. the studies by Gusak and co-
workers [6,7], one or more stable layers of new phases can develop
between the parent phases. Moreover, also a certain molar fraction
of B-component can be solved in the left phase and a certain molar
fraction of A-component can be solved in the right phase, depend-
ing on the temperature, see the numerous phase diagrams for A–B-
systems for solubilities.

Before discussing some solution concepts for the reactive diffu-
sion process, it should be mentioned that also the wording ‘‘reac-
tion diffusion’’ is used, see e.g. the book by Dybkov [8]. However,
the wording ‘‘reaction–diffusion’’ (note the hyphen!) is usually ap-
plied to describe the evolution of local fractions of one or more
substances, distributed in space, which change under the influence

of two processes: ‘‘diffusion and local chemical reactions’’ (see
WIKIPEDIA). In other words, in this case it is assumed that in each
point of the system a mixture of different phases can coexist and
their fractions change due to diffusion and due to local chemical
reaction, the kinetics of which is usually described by a nonlinear
function depending on the fractions.

However, in the micro-mechanical and thermodynamic models
we allow only one phase (not a mixture of multiple phases) at any
point of the system, and, thus, we prefer using the wording ‘‘reac-
tive diffusion’’ as the most appropriate one for description of pro-
cesses in the considered system, or in other words, ‘‘reactive
diffusion’’ can be considered as a diffusive process accompanied
by phase transformations.

Now some recently published concepts for the description of
the reactive diffusion kinetics are discussed. Dybkov [8] uses a
standard chemical approach in his book and introduces for each
system a certain number of ‘‘reaction constants’’ describing the
reactions at the interfaces and diffusion of components across
the layers. In the case of interface reaction control linear growth
occurs; for diffusion control the growth is parabolic. The search
for the links amongst the reaction constants, interface mobilities,
activity of sources and sinks for vacancies at the interface and bulk
diffusion coefficients is not directly pronounced in the concept.

A further step in understanding has been done by van Loo and
coworkers [9–11] or later by Paul and coworkers, see e.g. [12],
who presented the physico-chemical approach. They introduce
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an average inter-diffusion coefficient for each phase, and the ratios
of the intrinsic diffusion coefficients of the species in each phase
are considered as fitting parameters. This approach can treat not
only the parabolic growth of the layers controlled by diffusion
but also the splitting and motion of the Kirkendall planes, which
can serve for the determination of the ratios of the intrinsic diffu-
sion coefficients.

A crucial relation to be met in a solution concept is the mass
balance at an interface. If a mathematical (sharp) interface is con-
sidered, the transport theorem of continuum mechanics teaches
that the velocities of the interface relative to the lattice are gener-
ally different on both sides of the interface and they must be intro-
duced into the mass balance for the actual configuration; for
derivation, see e.g. [13] and its transferring to reference configura-
tion in [14], Sect. 4 there. The difference in the interface velocity
with respect to adjacent lattices is due to generation/annihilation
of vacancies at the interface and/or due to different partial molar
volumes of different components in different phases. Svoboda
et al. published several papers on reactive diffusion, addressed to
the Kirkendall effect by engaging the thermodynamic extremal
principle, see e.g. [15], meeting the above mentioned mass balance
as necessary constraint for the individual fluxes, see [16–18]. These
papers deal with stoichiometric intermetallic phases taking into
account the activity of sources and sinks for vacancies at the inter-
faces only or both in the bulk and at the interfaces. A recent contri-
bution [19] deals also with the interaction of bulk diffusion and
grain boundary/interface diffusion.

Danielewski et al. [20] use in their concept the so-called ‘‘Ste-
fan-condition’’ at moving interfaces, which differs obviously from
the formulation of the mass balance in the actual configuration.
Also interfaces of a given thickness between the individual phases
are assumed in [20]. Dealing with thick interfaces makes it, how-
ever, necessary to consider the interface region as further distinct
phase, for details see the studies [21,22]. Consequently, it is easier
to work with a sharp interface and the proper mass balance there.
Of course, the velocities of the interface relative to both adjacent
lattices must be introduced.

Most recently Erdelyi and Schmitz presented a solution concept
in [1] (denominated as ‘‘Erdelyi and Schmitz concept’’), where they
tried to avoid working with the interface and replaced the coupled
problem of diffusion and interface migration by just the solution of
a single modified diffusion equation expressed in the gradients of
the site fractions and using thermodynamic factors. This concept
was applied earlier only for intermixing of binary one-phase sys-
tems (and not reactive diffusion with moving interfaces) by Gusak
et al., see [23] with references also to the remarkable research in
the former Soviet Union, and Beke et al. [24] recently. If this idea
worked also in multi-phase systems, this would be a significant
simplification of the treatment in the field of reactive diffusion. A
further concept can be dealing directly with the gradients of the
chemical potentials and tracer diffusion coefficients instead of
the gradients of the site fractions and the thermodynamic factors.
In the following context we denote this concept as the ‘‘direct
chemical potential concept’’.

We consider it now as a motivation to check if the Erdelyi and
Schmitz concept of reactive diffusion [1] and the direct chemical
potential concept lead to identical solutions as those based on rig-
orous treatment of the coupled problem of diffusion and interface
migration. Since analytical solutions are not possible, numerical
solutions are compared.

2. System definition

Let us choose a simple binary system of substitutional compo-
nents A and B as used in [1], where y describes the site fraction

of component A. For sake of simplicity we select a one-dimensional
setting with the coordinate x in the actual configuration. One phase
is supposed to be a solid solution (superscript SS) forming an ideal
solution with the molar Gibbs energy given by

gSS ¼ RT½y ln yþ ð1� yÞ lnð1� yÞ�; ð1Þ

the second phase is supposed to be an intermetallic phase (super-
script IMP), the molar Gibbs energy of which is approximated by

gIMP ¼ g0 þWðy� ymÞ
2
: ð2Þ

R is the gas constant, T the absolute temperature, g0 the minimum
value of the molar Gibbs energy of the IMP for ym, and W character-
izes the width of solubility in the IMP. Then the chemical potentials
of individual components in individual phases are given by

lSS
A ¼ RT ln y; ð3:1Þ

lSS
B ¼ RT lnð1� yÞ; ð3:2Þ

lIMP
A ¼ g0 þW 2y� y2 þ y2

m � 2ym

� �
; ð3:3Þ

lIMP
B ¼ g0 þW �y2 þ y2

m

� �
: ð3:4Þ

The solubility limits yeq
1 and yeq

4 in the SS and yeq
2 and yeq

3 in the IMP
are given by the local equilibrium condition, solving the equations
below for yeq
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� �
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which can be determined numerically, see Fig. 1 with the data used
in Sect. 5 of this paper.

We suppose that the molar volumes of both components and of
vacancies in both phases are the same denoted by X. The bulk as
well as the interfaces act as ideal sources and sinks for vacancies,
which is in accordance with the so-called Darken concept, used
also by Danielewski et al. [20]. Furthermore, we assume that the
equilibrium vacancy site fraction is negligible with respect to
one, the influence of the internal stress state plays a negligible role
and the tracer diffusion coefficients DSS

A , DSS
B , DIMP

A and DIMP
B are inde-

pendent of y.

Fig. 1. Molar Gibbs energies of both phases showing the derivation of equilibrium
site fractions at the interfaces.
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