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a b s t r a c t

Computer simulations using the Density Functional Theory and GAUSSIAN 03 were implemented in pre-
dicting potential mechanisms that can be associated with the high temperature oxidation of stainless
steels. In particular, the role of nanoceria protective coatings on the induced diffusional mechanisms at
1273 K was satisfactorily predicted. Atomistic calculations were made on computed activation energies
for oxygen inward diffusion and for iron outward diffusion through the nanoceria coating and the chro-
mium oxide scale, respectively. In addition, it was assumed that when nanoceria coatings are present in
stainless steels, cerium ions can be incorporated in the Cr2O3 scale as dopants. Computer simulations
indicate that in the absence of Ce ions in the chromia scale lattice Fe outward diffusion is dominant
and accounts for the relatively high oxidation rates. It was found that in a Ce-doped Cr2O3 scale the pre-
dicted activation energies exhibit appreciable changes. Under these conditions the activation energies for
both, iron and oxygen diffusion increase in magnitude. However, the activation energy for O inward dif-
fusion falls below the one corresponding to Fe outward diffusion. In turn, oxygen inward diffusion
becomes rate limiting accounting for the role of nanoceria coatings on the high temperature oxidation
resistance of stainless steels.

Published by Elsevier B.V.

1. Introduction

High temperature oxidation is in general governed by active dif-
fusional mechanisms which control the rate of scale growth.
Accordingly, there is an extensive number of works [1–3] aimed
at unfolding the microscopic mechanisms associated with the dif-
fusional processes involved in high temperature oxidation. From
these works, insight on the exhibited activation energies and diffu-
sional coefficients is often provided. Nevertheless, the experimen-
tal outcome does not always reflect the active mechanisms that
occur at the nanoscale level.

In general, mass transport over relatively long diffusional dis-
tances can be described by Fick first and second laws [4]. The
experimentally determined diffusion coefficients reported in the
literature often constitute a global evaluation of the transport phe-
nomena, in a crystal lattice containing numerous defects including
grain boundaries and dislocations. However, it is difficult to unfold
the intrinsic nature of the atomistic diffusional processes of a given
crystal lattice from conventional experiments.

Theoretical studies on diffusional mechanisms have been car-
ried out using atomistic calculations and molecular dynamics
(MD) methods. MD methods can be employed to obtain informa-
tion on diffusional coefficients (Einstein relation, implying an aver-
age on all times and a summation on all ions). Hence, MD is highly
valuable in defining the diffusion pathways and for gaining insight
into the active diffusional mechanisms in nanostructures.

In the present work, atomistic calculations were made in order
to disclose possible mass transport mechanisms that are active
during the high temperature oxidation of stainless steel. The steels
are typically coated with a film of nanoceria particles which pro-
vides a dramatic improvement in the high temperature oxidation
resistance [5–7]. The experimental outcome on the role played
by the nanoceria coatings [5] was used in the present work to
establish possible mass transport mechanisms across the resultant
oxide scale.

Thus far, there are no detailed microscopic investigations on the
oxygen mass transport in Cr2O3 scales nor on the role of cerium
oxide as a coating in stainless steels. Haiying [5] investigated the
oxidation resistance of a CeO2 coated 304 stainless steel and found
that oxygen inward diffusion becomes dominant during high tem-
perature exposure. This in agreement with the work of Thanneeru
et al. [7]. In the lack of enough information on the diffusional
mechanisms involved, a methodology based on the Density
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Functional Theory (DFT) was developed here. In particular, the aim
of this work was the determination of possible high temperature
diffusion transport mechanisms at the atomistic scale in nanoceria
coated stainless steels.

2. Computer simulation method

Experimental methods using nuclear probes [8–10] such as
incoherent and coherent Quasi-elastic Neutron Scattering (QENS)
[8,11] and Nuclear Magnetic Resonance (NMR) [8,12] are com-
monly employed in establishing the microscopic aspects of diffu-
sion. By these means, it is always possible to establish the atomic
jump frequency, C in single crystals which constitutes the micro-
scopic key feature for the diffusion phenomenon [13].

C ¼ v� � expð�DH=kTÞ ¼ v � expðDS=kÞ � expð�DH=kTÞ; ð1Þ

where v⁄ represents the Vineyard’s prefactor, v is the effective fre-
quency associated with the vibration of an atom in the direction
of the saddle point position, k is the Boltzmann’s constant, DH
and DS are the enthalpy and entropy associated with the atomic
displacements, respectively.

A determination of bulk diffusion from first principles can be
achieved by comparing the physicochemical properties of two
states characterizing the system at the microscopic scale; (a)
during diffusion the initial state (IS) and (b) the saddle point state
(SPS). The initial state corresponds to the system before diffu-
sion, having a certain number of point defects such as vacancies
or interstitials as bulk diffusion is caused by the existence of
these defects. The saddle point state corresponds to the system
in which the position of the diffusing atom is associated with
the complex activated along the diffusion pathway (transition
state). The energy between both states provides the microscopic
activation energy for diffusion and it corresponds to the DH va-
lue in Eq. (1).

In a given oxide, the active diffusional mechanisms can involve
various possible diffusion pathways, among which the dominant
one will be characterized by the lowest energy barrier (activation
energy). Hence, in this work, the Density Functional Theory (DFT)
is employed in order to compute the energies corresponding to
both, the initial and the saddle point states. The essence of the
DFT is to minimize the total energy E[n(r)], also known as the
Kohn–Sham equation [14] given by:

E½nðrÞ� ¼ T0½nðrÞ� þ Eh½nðrÞ� þ EXC ½nðrÞ� þ
Z

nðrÞVextðrÞdr; ð2Þ

where n(r) is the charge density function in terms of the non-inter-
acting single-particle wavefunctions, wi; T0 is the kinetic energy of a
set of non-interacting electrons; Eh the classical Coulomb interac-
tion; EXC is the exchange–correlation energy which is the sum of
all remaining many-body contributions (including kinetic energy
effects) to the total energy; Vext(r) is the external potential, which
is determined by the ground-state density n0.

T0½nðrÞ� ¼ �
�h2

2me

XN

i¼1

hwijr2jwii; ð3Þ

Eh½nðrÞ� ¼
1
2

ZZ
nðrÞnðr0Þ
jr� r0j drdr0; ð4Þ

and

nðrÞ ¼
XN

i¼1

jwiðrÞj
2
; ð5Þ

VextðrÞ ¼ Vext½n0�ðrÞ: ð6Þ

Unfortunately, the exact exchange–correlation energy func-
tional EXC dependence upon n(r) is unknown, and the successful
implementation of DFT relies on its accurate estimation. In this
particular work, this aspect was treated by means of the general-
ized gradient approximation (GGA). From the work of Perdew
and Wang [15], the exchange–correlation energy is expressed as
more general functions (Eq. (7)) of n(r) and rn(r).

EGGA
XC ½nðrÞ� �

Z
f ½nðrÞ;rnðrÞ�dr: ð7Þ

Once a form for EXC is assumed, the ground state energy can be
found by one of two methods. The first one is based on a direct
minimization of Eq. (2) with respect to n(r), subject to the ortho-
normality constraint: hwi|wji = dij. Alternatively, a set of single-par-
ticle Schrödinger-like equations (Kohn–Sham equations) may be
solved self-consistently for the non-interacting wavefunctions, wi:

� �h2

2m
r2 þ Veff ðrÞ

" #
wiðrÞ ¼ eiwiðrÞ; ð8Þ

Veff ðrÞ ¼ VextðrÞ þ VhðrÞ þ VXCðrÞ; ð9Þ

where

VhðrÞ ¼
dEh½nðrÞ�

dnðrÞ ; ð10Þ

VXCðrÞ ¼
dEXC ½nðrÞ�

dnðrÞ : ð11Þ

Finally, in terms of the Kohn–Sham eigenvalues ei, the total en-
ergy can be expressed as:

E ¼
XN

i¼1
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1
2

Z
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Thus far, the key factor is to find a solution to Eq. (8). In practice,
a numerical solution for this differential equation proceeds
through an expansion of the single-particle wave functions. This
is achieved by employing a suitable set of basis functions and by
solving the resulting secular equation for the coefficients in this
expansion and/or for the eigenvalues for which it has a solution.
Although several choices are possible in theory, in practice the
two most common types are atomic orbitals (AOs) and planewaves
(PWs).

A plane wave basis set is the most common choice for simula-
tions of crystalline systems, particularly those containing metallic
phases. Hence in the present work, PWs are considered in solving
Eq. (8). PWs have the advantage of being orthonormal and com-
plete; the accuracy of the basis can be systematically improved
by simply increasing the number of basis functions, thereby mak-
ing it easy to check for convergence.

Another challenge facing the simulation of condensed phases
results from the large number of electrons (�1023), and, nearly
infinite extent of wave functions required in simulating even a
relatively small (1 cm3) amount of matter. Both of these issues
are resolved by implementing periodic boundary conditions
(PBC), in which a ‘‘supercell’’ is replicated throughout the space.
By creating an artificially periodic system Bloch’s theorem [16]
can be applied, thereby allowing the periodic part of the wave
function ukn(r) to be expanded in a discrete set of PWs whose
wave vectors are the reciprocal lattice vectors G of the crystal
structure:

wknðrÞ ¼ eik�ruknðrÞ ¼
X

G

cGðknÞeiðkþGÞ�r: ð13Þ
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