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a b s t r a c t

As the use of Shape Memory Alloys (SMAs) grows increasingly common in many industrial applications,
the porous form of SMA is of particular interest as it associates both the shape memory effect and super-
elasticity with the characteristics of foam. However, numerical prediction of the mechanical response of
SMA foam is very challenging due to the micro–macro nature exhibited by the material, as the porous
microstructure is several orders of magnitude smaller than the overall dimensions of the macroscopic
porous sample. To circumvent, or at least alleviate this computational weight, an attempt is made to
describe the superelastic behavior of SMA foams using two approaches: Representative Volume Element
(RVE) and scaling relation; the latter is based on modeling the fully-dense material with mechanical
properties equivalent to those of its porous counterpart. This approach avoids direct modeling of the por-
ous microstructure and thus contributes to a drastic reduction of the computational cost. A validation is
made by comparing the numerical results obtained in this study with experimental results taken from
the literature.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The use of Shape Memory Alloys (SMAs) in porous form is
highly attractive for many industrial applications, as the resulting
material exhibits both the SMA mechanical properties, i.e. super-
elasticity and shape memory, and foam characteristics. Indeed,
due to their additional benefits, foam materials are especially
appealing since they exhibit several valuable characteristics such
as low density, high permeability and desirable energy dissipation
properties [21]. Selecting the degree of foam porosity is highly
dependent on the final use of the material: from low pore volume
fraction (PVF) in structural applications, up to 70% PVF for biomed-
ical implants [4,5].

In this study, we focus our attention on SMA foams for biomed-
ical applications, which are characterized by high porosity and
open and interconnected pore structure to promote biological tis-
sue ingrowth (see, for example, the study on titanium foam im-
plants [6]. Several manufacturing techniques, such as Sintering
Metal Powders or the Space Holder Method, are able to produce
open-cell high PVF foams with random pore structure [17] suitable
for medical applications.

From the materials science point of view, numerous studies
have been performed to evaluate foam characteristics, but their
numerical modeling, especially for the case of SMA foams, remains
an active research domain. Specific numerical approaches such as
the Unit Cell Finite Element Method [12,15] or the micro-mechan-
ical averaging technique [7,13] cannot be used to model foams
with high PVF and random and irregular pore structure – the types
of most interest in this work.

The need for explicit modelling of the random pore structure
has thus been demonstrated. This modeling can be realized by
defining a Representative Volume Element (RVE) with dimensions
that are larger than the ordinarily-considered microscale, while
smaller than the macro or continuum scale. However, although
the RVE enables the modeling of porous materials with lesser
numerical cost than the micro–macro approach, the RVE approach
is subjected to restrictions that make it unsuitable for modelling
complex geometry, such as that of medical implants.

Therefore, we have decided to use the RVE approach as a first
step, to define the Gibson–Ashby-like scaling relations. Within this
approach, a property P of the foam material may be obtained as a
function of the relative density using the following power law
function:
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where the subscript s denotes the solid, i.e. fully dense, material, q
the density, and C and n are the coefficients to be determined.

We also consider elastic and superelastic strains, on a micro-
scale level, and explicitly excluding plasticity and damage accumu-
lation. The validity of this scaling relations approach is then
restricted to small and medium macro-scale deformations.

The paper is organized as follows. In Section 2, the Representa-
tive Volume Element (RVE) models of porous SMAs are described.
The results obtained with the RVE model are then used to calibrate
the parameters of the scaling relation approach (Section 3). In Sec-
tion 4, the results obtained with the scaling relation approach are
discussed and compared with the experimental data taken from
the literature. Our conclusions are presented in Section 5.

2. Computational setup

2.1. SMA constitutive model

All the computations are performed using the commercial finite
element software Ansys 14. The SMA model used is the one already
implemented in [1], based on the work of [3]. Hereafter the model
is briefly summarized and the interested reader is invited to refer
to [3] for more information.

The material model implemented here considers the non-linear
behavior occurring during the reversible phase transformation
from Austenite to Martensite (A ? M on Fig. 1) or from Martensite
to Austenite (M ? A on Fig. 1). For the sake of clarity, we adopt the
following convention concerning the exponents or subscripts: A, M,
AM and MA refer, respectively, to Austenite, Martensite, Austenite
to Martensite and Martensite to Austenite phase transformations.
It is assumed that the material behavior does not show any perma-
nent strain and that the material is perfectly isotropic. Fig. 1 de-
picts the five constants used to model the SMA behavior:

� rAM
s is the starting stress for the phase transformation from

Austenite to Martensite.
� rAM

f is the final stress for the phase transformation from Austen-
ite to Martensite.
� rMA

s is the starting stress for the phase transformation from
Martensite to Austenite.
� rMA

f is the final stress for the phase transformation from Mar-
tensite to Austenite.
� eL is the maximum superelastic strain.

Note that, along with the SMA constitutive model, the isotropic
elastic Austenite model parameters (Poisson’s coefficient and
Young’s modulus, the latter depicted by EA in Fig. 1), must be filled
out. To complete the model presentation, EAM, EM and EMA moduli
can also be used for the model description, as shown in Section 3.

Throughout the present article, porous SMA material will be de-
fined by the parameters summarized in Table 1. The stress–strain
response of a fully dense material calculated with the Table 1
parameters is shown on Fig. 2. Note that to reduce the number of
iterations required to complete phase transformation, eL is set to
0.01, which is approximately 1/10 of the Ti–Ni superelastic range.
No difference is made between tension and compression.

2.2. RVE approach: RVE size and characteristics

The porous material studied here exhibits a randomly defined
porosity in terms of pore shape, size and distribution. As stated
in the previous section, there is no means available to avoid the ex-
plicit representation of the porous microstructure while tracking
the overall response of the material. To attenuate the numerical
weight of such a micro–macro approach, one could apply specific
numerical strategies to allow the macroscale behavior to be repro-
duced with a reduced model size, the so-called Representative Vol-
ume Element (RVE) approach. In this study, the RVE is defined as
the smallest cubic sample capable of simulating the macroscale re-
sponse of SMA foams under specific boundary conditions.

First, we create a cubic finite element model exhibiting ran-
domly-defined pores. To ensure a good connectivity between the
elements, i.e. in order for them to share at least one face, the por-
ous RVE is set as follows: a cubic domain is considered as an empty
(without matter) lattice of cubic elements; the central element of
the lattice is then defined as a matter element and the foam (mat-
ter path) is created by affecting the matter of the randomly-picked
neighbour sharing a face with the affected element. Repetition of

Fig. 1. Schematic of superelastic behavior (dash-dot line) with the Ansys model
(plain line) and its parameters: rAM

s , rAM
f , rMA

s , rMA
f and eL; EA, EAM, EM, EMA,

representing the corresponding Young’s moduli.

Table 1
Material parameters of a fully dense SMA constitutive
model.

Material parameters Values

EA (GPa) 42
m 0.3
rAM

s (MPa) 100

rAM
f (MPa) 140

rMA
s (MPa) 60

rMA
f (MPa) 20

eL 0.01

Fig. 2. Stress–strain curve obtained for a maximum strain of 0.015.

94 G. Maîtrejean et al. / Computational Materials Science 77 (2013) 93–101



Download English Version:

https://daneshyari.com/en/article/7961745

Download Persian Version:

https://daneshyari.com/article/7961745

Daneshyari.com

https://daneshyari.com/en/article/7961745
https://daneshyari.com/article/7961745
https://daneshyari.com

