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a b s t r a c t

In the present work the validity of the Aboav–Weaire-relation in polycrystalline grain microstructures
obtained by junction limited grain growth as it may occur in nanocrystalline materials is tested. To that
aim, two-dimensional Monte Carlo Potts model simulations have been performed, and it follows that
while the kinetics as well as the grain size–topology–relationship shows significant differences for grain
boundary controlled grain growth and triple junction controlled growth, the Aboav–Weaire-relation is
fulfilled independent of the grain feature controlling the growth kinetics.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In 1970 Aboav has undertaken the task to determine how the
grains of a typical polycrystal are arranged in space [1]. As a result
he concluded that grains in a polycrystalline solid are not simply
disposed at random, but are rather arranged in a certain order. In
particular, for the investigated case of sections through polycrys-
talline magnesium oxide he found that the relation between the
number of faces s of a grain are related to the average number of
faces of all neighboring grains ms by the following simple
approximation

ms � s ¼ 5 � sþ 8: ð1Þ

Only four year later Weaire [2] pointed out that such a conclu-
sion of ‘‘nonrandom’’ ordering in polycrystals cannot be drawn this
simple. To that he cited Euler’s Theorem as an elementary example.
In particular, Euler’s Theorem states that in an infinite two-dimen-
sional polyhedral network, where only three fold vertices exist, the
average number of faces of all polyhedral equal six. Hence it gives
quite well a microstructural correlation in a cellular network, while
the grains can still be distributed randomly.

However, Weaire also presented a relatively simple derivation
of an equation similar to Eq. (1) based on Euler’s Theorem as well
as an extension taking the second moment of the neighbor distri-
bution l2 into account such that

ms � s ¼ 5 � sþ ð6þ l2Þ: ð2Þ

It should be noted that Eq. (2) is not such a strict general rule as
Eq. (1). Any possible two-dimensional cellular network that is asso-
ciated with an own distribution of number of faces is characterized
by an own distinct value for the constant term in Eq. (2).

Considering the distribution of cells in a planar section of soap
foam led to a further modification by Aboav [3] yielding the today
well-known Aboav–Weaire-law

ms � s ¼ ð6� aÞ � sþ ð6aþ l2Þ; ð3aÞ

where a is a constant. Its value depends on the type of cellular pat-
tern under investigation and is assumed to take for polycrystalline
grain microstructures obtained by normal grain growth a value that
is close to unity. Eq. (3a) can additionally be written in terms of the
average number of faces as

ms � s ¼ ðhsi � aÞ � sþ ðhsi � aþ l2Þ: ð3bÞ

Ever since then, Eqs. (3) have been used very successfully to de-
scribe different kinds of cellular pattern, as for example polycrys-
talline metals and ceramics, soap froth or biological tissues
(compare, e.g., [4–10]).

In the following, two-dimensional Monte Carlo Potts model
simulations have been performed. It follows that while the kinetics
as well as the grain size–topology–relationship shows significant
differences for grain boundary controlled grain growth and triple
line controlled growth, the Aboav–Weaire-relation is fulfilled inde-
pendent of the grain feature controlling the growth kinetics.
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2. Topology

For polycrystalline materials it is commonly known that for
normal (grain boundary controlled) grain growth the average
(linear) grain size increases according to

hRi ¼ ðb � t þ hRi1=n
0 Þ

n
; ð4aÞ

where R is the grain radius, which is defined in the present work as
the radius of a grain area equivalent circle, b is the growth constant,
and n is the growth exponent, which is supposed to have theoreti-
cally a value of 0.5.

Then again, recently it has been shown that in case of triple
junction control a linear time law follows (compare, e.g., [11,12])

hRi ¼ b � t þ hRi0: ð4bÞ

Both kinetics have been observed using Monte Carlo Potts model
simulations (details see [13–15]) and have been shown to be char-
acterized by statistical self-similarity regarding the grain size distri-
bution as well as regarding the topology–size–relation [16].

In the following analyses we consider at first the relation be-
tween number of faces s of a grain and its relative grain size x de-
fined as x ¼ R=hRi (compare [17,18]) as follows: A central grain of
size R is surrounded by s grains of average size hRi. The perimeter
U of the central grain through the centers of the surrounding grains
can be calculated in two different ways. Firstly, it holds
U ¼ p � ðRþ hRiÞ. Secondly, the average diameters of s grains add
up to U ¼ s � 2hRi. Assuming that those two perimeters are identical
it follows

s ¼ p � xþ p: ð5aÞ

Alternatively, a similar argument concerning the area, which
can be calculated either as A ¼ p � ðRþ hRiÞ2 or as A ¼ p � R2þ
s � 0:5p � hRi2, yields

s ¼ 4 � xþ 2: ð5bÞ

Sadly, this very simple argument is not reflected by normal grain
growth simulations. In particular, we find by use of the Potts model
a quadratic relation between s and x as presented in Fig. 1a. The
deviations from Eqs. (5) are quite obvious. Then again, the quadratic
(non-polynomial) term has been found to be very important for the
mean-field theory of grain growth by Streitenberger and Zöllner
[19–21] yielding deviations from Hillert’s classical solution.

However, for the case that the triple junctions control the
growth kinetics we find that s(x) can be represented very well by
a linear function as shown in Fig. 1b. Moreover, Eq. (5a) is an
adequate representation of the self-similar simulation data,
although the slopes differ slightly. In comparison, the results of
grain boundary controlled growth show deviations to higher grain

boundary faces for small grains (x < 0.5) as well as large grains
(x > 1.75).

Then again, for both kinetics the average number of faces is in-
deed quasi identical to the expected value of six. Also the maxi-
mum in the distribution of the number of faces f(s) is close to six
for both cases (compare Fig. 2a). However, the distributions them-
selves vary rather strongly. f(s) for grain boundary controlled
growth is narrower, while the distribution for triple junction con-
trolled growth has a long right-hand tail and is not as peaked as the
other one. Hence, the second moment for grain boundary con-
trolled growth is with l2 = 2.1650 visibly smaller than the value
for triple junction controlled growth with l2 = 2.9019.

A direct comparison of the number of faces versus relative grain
size for all data each from one time step of the two growth kinetics
is given in Fig. 2b. While the grains with approximately five up to
eight faces spread across the same size range, those with nine faces
or more show significant differences. In particular, for triple junc-
tion controlled growth considerable higher relative grain sizes are
reached without showing any tendency to higher number of faces.
This reduces the curvature of the least-squares fit for large grain
sizes. At the same time, as also visible in Fig. 2a, there are distinctly
more grains with three and four faces in case of triple junction con-
trol. This also reduces the curvature of the least-squares fit only
this time for small grains.

3. Aboav–Weaire-law

The question arises whether the observed deviations in the self-
similar topology–size–relations are coupled with deviations in lo-
cal topological relations like the relationship between the number
of faces of a grain and the average number of faces of all neighbor-
ing grains as described by the Aboav–Weaire-law. The latter in
terms of Eq. (3b) as ms � s ¼ ðhsi � aÞ � sþ ðhsi � aþ l2Þ can be calcu-
lated directly from the above given simulation results.

The microstructure of grain boundary controlled normal grain
growth is characterized by an average value for the number of
faces of 5.9979 (Fig. 1a) and the associated distribution by
l2 = 2.1650 (Fig. 2a). Assuming a = 1 it follows

ms � s ¼ 4:9979 � sþ 8:1629: ð6aÞ

For triple junction controlled growth the microstructure is charac-
terized by hsi ¼ 5:9857 and l2 = 2.9019, from which it follows with
a = 1

ms � s ¼ 4:9857 � sþ 8:8876: ð6bÞ

On the other hand, for the simulations the measured Aboav–
Weaire-relations are given in Fig. 3 for both growth kinetics. It
can be seen that the simulated microstructures show indeed the

Fig. 1. Self-similar relation between number of faces and relative grain size for: (a) grain boundary controlled growth; (b) triple junction controlled growth.
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