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a b s t r a c t

To say that a constitutive model has to verify ‘‘the principle of material objectivity’’ to ensure its frame-
indifference has become a common wisdom. Objective transports are thus defined to serve as tensor
rates. These operators are in particular applied to the Cauchy stress tensor. They are used as time deriv-
atives to describe non-linear or dissipative phenomena observed during the finite transformations of a
material continuum. Because an infinite number of such transports may be constructed and shown to
be objective, the selection of the appropriate transport and its validity still constitutes an open and debat-
able question.

Differential geometry, within its four-dimensional formalism, has proven its ability to describe physical
fields and their variations in space and time while ensuring the covariance of any physical law. This
description is here applied to the motion of a material continuum within the classical hypotheses of New-
tonian physics. In this context, we show that the rate of a tensor as seen by a point of space–time is
uniquely defined by the covariant rate; this quantity is not invariant with respect to superposed rigid
body motions. The rate of a tensor as seen by a moving particle of matter is uniquely defined by the
Lie derivative of the tensor. This operator is invariant with respect to superposed rigid body motions.
Both, the covariant rate and the Lie derivative are independent of the observer and could thus be used
in a constitutive model within a four-dimensional formalism. We show next that the projection of the
Lie derivative of the Cauchy stress tensor within an inertial 3D Cartesian frame corresponds to Truesdell’s
transport and that the other 3D objective stress transports, if they have the dimension of a rate, do not
correspond to a time derivative of this tensor. The Truesdell transport is thus the only objective transport
that represents a frame-indifferent time derivative of the Cauchy stress tensor.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The ‘‘principle of material objectivity’’ or ‘‘principle of material
frame-indifference’’ plays an important role in continuum mechan-
ics by constraining the formulation of material constitutive model
[1]. A major issue corresponds to the definition of frame-indiffer-
ent transports to represent, objectively, the variations of a tensor
with respect to time. These operators are indifferently referred to
as objective rates, invariant time fluxes or objective transports.
They are applied in particular to the Cauchy stress tensor. This is-
sue has been first extensively discussed by Jaumann [2] who intro-
duced an objective stress transport to serve as stress rate in
constitutive models. Such objective rates are necessary to model

complex solid or fluid materials [1,3–6]. They are also used within
numerical formulations to solve non-linear problems.

The difficulty resides in the fact that there are infinitely many
possible objective time fluxes that may be used as stated by Truesdell
and Noll [1]. It is commonly admitted that the choice of the objec-
tive transport should be adapted to the kinematics of the modeled
material but there is no specific mathematical or physical rule to
guide this choice. Although Truesdell and Noll [1] postulate that
the properties of a material are independent of the choice of flux,
which, like the choice of a measure of strain, is absolutely immaterial,
it is admitted that the transport operator could depend on the
material to be modeled [5,7,8]. Objective stress transports have
been interchangeably used for comparison, in particular in numer-
ical computations [5,9–13]. The fact that several objective trans-
ports exist, leading to different results, to define a rate that
should be kinematically meaningful, immaterial and frame-indif-
ferent has lead several authors to pinpoint the difficulty with dif-
ferent interesting arguments [5,8,10–12,14–24].
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Differential geometry proposes an algebra for tensors and their
variations expressed in arbitrary coordinate systems. It is recog-
nized as a formalism of choice to describe the straining motion
of a material continuum within a 3D context; see, for example,
[3,25,26,8]. Within its four-dimensional (4D) context, differential
geometry has found a major and essential application in physics
with the theory of General Relativity. This theory has shown its
ability to deal properly with space–time transformations. Newto-
nian mechanics is embedded in General Relativity, as a limiting
theory concerning phenomena for which the absolute speed of
any points in negligible compared to the speed of light [27,28]. It
has been shown that the formulation of Newtonian mechanics
with a four-dimensional formalism offers an appropriate context
to properly define objectivity and time derivatives [29–31]. We
here propose to examine whether the transports used in contin-
uum mechanics to construct constitutive models correspond in-
deed to actual time derivatives. We further verify whether these
operators are frame-indifferent, in other word whether they satisfy
the principle of covariance.

2. Problematics: kinematically meaningful transports

As proposed in [11], it is possible to list the characteristics that
a transport operator should exhibit to be included in a constitu-
tive model and/or within a numerical algorithm. One of the
requirement is that this transport should correspond to a time
derivative. Indeed, when constructing a material constitutive
model in an incremental form, an instantaneous variation of the
tensor over a time increment is needed; within a numerical
algorithm, the discretization of this first order rate is needed for
integration purposes. Fiala in [15] has initiated this approach,
insisting on the necessity to find an expression for a rate of
change.

Consider then a physical entity a. Further assume that this func-
tion depends on time t and on a set of other variables n themselves
possibly being functions of time; both a and n are differentiable.
The derivative of a with respect to time is given by:

lim
t0!t

aðn0; t0Þ � aðn; tÞ
t0 � t

ð1Þ

with

lim
t0!t

n0 ¼ n

The physical meaning of this derivative is given by the nature of
a and the specific dependence of a and n on time. The fact that time
is indeed considered as the physical variable for the differentiation
makes of the above quantity a time derivative.

When the transport of a tensor is defined to serve as time
derivative, it should be first written under the form of an incre-
ment following Eq. (1). Only then, should the corresponding
transport operator be derived. This is what gives a kinematical
meaning to this operator. Within a 3D context, it is necessary
to choose a frame of reference to establish the classical time
derivative operators such that these operators depends on the
chosen frame. Objective transport operators have thus been
proposed to solve this difficulty. Confusion arises because it is
possible to define an infinite number of such operators. Further,
it is not at all clear that these transports correspond to a time
derivative although they are used as such. It is then difficult to
choose one or the other on the basis of physical or kinematical
considerations alone. The 4D formalism offers an opportunity
to clarify these definitions within a fully frame-indifferent
(covariant) context.

3. Four-dimensional description of space–time

Differential geometry (also known as Ricci-calculus) proposes a
general mathematical context for the description of tensors and
the associated algebra. The present Section introduces the defini-
tions that are necessary for the rest of this work; a detailed presen-
tation could be found for example in [32,33]. Classical notions of
4D physics are also reviewed to introduce specific vocabulary
and notations. Details on these subjects are proposed for example
in [34,35] where the general concepts are introduced, while the
theory of General Relativity applied to physical fields is presented
by Landau and Lifshits [36] and Weinberg [28].

3.1. Coordinates and their transformations

As opposed to classical mechanics, space–time is described with
a four-dimensional continuous and differentiable manifold. The
coordinates of a point within this manifold are parametrized by a
set of four real numbers xl. This point is called an event and corre-
sponds to a given position and instant of time. The coordinates are
such that:

xl ¼ ðx1; x2; x3; x4Þ ¼ ðxi; x4Þ ð2Þ

In this work, the index notation is used. The convention is such
that Greek indices l, m, . . . run from 1 to 4 and label a four-dimen-
sional entity. Latin indices i, j run from 1 to 3 and label the spatial
part of this entity.

Other sets of coordinates could be indifferently chosen to
parameterize the points of the manifold. Consider then, two possi-
ble sets of coordinates noted xl and ~xl. The coordinate transforma-
tion from xl to ~xl ¼ ~xlðxmÞ implies that:

d~xl ¼ @
~xl

@xm dxm ð3Þ

The matrix @~xl

@xm is the Jacobian matrix of the coordinate transfor-
mation and @~xl

@xm

�� �� is the determinant of this Jacobian matrix. Note
that Einstein’s summation convention has been used in Eq. (3)
and will be used in the rest of this work.

3.2. Tensor densities

Tensor density fields of weight W can then be defined over the
points of the manifold. For the sake of generality, they are noted a
to represent any given tensor density. Tensors densities are indif-
ferent to an arbitrary change of coordinate systems or, equivalently
independent to coordinate transformations. Thus, the components
of a second rank tensor density a always transform through a
change of coordinates from xl to ~xl as [32,37]:

~al ¼ @xa

@~xb

���� ����W @~xl

@xm am ð4Þ

~alm ¼ @xa

@~xb

���� ����W @~xl

@xk

@~xm

@xj akj ð5Þ

~alm ¼
@xa

@~xb

���� ����W @xk

@~xl
@xj

@~xm akj ð6Þ

It is possible to write similar equations for the components of
tensor densities of any rank and, classically, upper indices denote
the contravariant components of the tensor while lower indices
denote its covariant components.
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