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a b s t r a c t

A phenomenological theory is developed which predicts the possible existence of meta-stable chemical
composition modulations in the spinodal (instable) region of the phase diagram of binary alloys. This is
accomplished through a modified elastic energy term in the theory of diffuse interfaces by Cahn and
Hilliard: Analogously to Cahn’s expansion of the molar chemical free energy, also the (un-relaxed)
internal stress tensor due to chemical composition modulations is expanded in a Taylor series of the
spatial derivatives of the local composition up to second order terms. This mathematical approach is
confirmed by atomistic modeling.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

For some binary alloys, experimental evidence was found that
the short-range order state can be described not only by the atomic
pair probability parameters (Warren parameters [1]) but also in
terms of ordered micro-domains [2,3]. Aubauer [4,5] developed a
phenomenological theory to explain this so-called state of ‘‘dis-
perse order’’. He assumed a dilute system of equally sized domains
with a trapezium shaped composition profile. Furthermore, he as-
sumed that the ratio of the specific interface energy to the thick-
ness of the rim zone be a constant. This ad hoc assumption is not
evident, and indeed is not supported by Cahn’s well-known theory
of diffuse interfaces. Hence, Aubauer’s theory was questioned [6],
and the nature of short-range decomposition and short-range or-
der was attributed solely to statistical composition fluctuations.

This discrepancy is resolved in the present paper by modifying
the theory of Cahn and Hilliard [7–10]: In the same way as the local
molar chemical energy, also the un-relaxed (distortion-free) inter-
nal stress tensor due to a given composition modulation is ex-
panded in a Taylor series of the spatial derivatives of the local
chemical composition up to second order terms. It is shown that
this modified theory of diffuse interfaces can in principle explain
the possible existence of meta-stable composition modulations in
the spinodal region of the phase diagram of binary alloys, which
are identified with short-range decomposition.

2. Theory

2.1. Problem definition

A composition modulation c(r) implies a (yet distortion-free)
internal stress which together with an external pressure p0 forms
a stress field r(0) (i.e. the ‘un-relaxed state’) which gives rise to a
displacement field u(r) so that a point r is shifted to the point
r + u(r). The displacement field u(r) induces an elastic stress field
r(e), and is determined by making the total stress r = (r(0) + r(e) ful-
fill the elasto-mechanical equilibrium condition (stress relaxation).
The thermodynamic equilibrium is characterized by a minimum of
the mean molar Gibbs free energy. The mean molar Gibbs free en-
ergy G is composed of the mean molar chemical free energy Fchem,
the mean molar elastic energy Eelast, and the product of the exter-
nal pressure p0 and the mean molar volume V:

G ¼ Fchem þ Eelast þ p0 � V : ð1Þ

The local composition c is defined as the local mole fraction of
the component B of the alloy AB, and is assumed to be a periodic
function of the three spatial coordinates. Thus, the volume of the
sample can be thought of being built up of equivalent unit domains
with the same composition distribution. The material is taken to be
isotropic, and the unit domains are approximated as spheres of
equal size. In the un-relaxed state under pressure, the radius of
these unit spheres is R. The total volume of all of the unit spheres
is set equal to the volume of the sample. The boundary condition
for each unit sphere is taken to be the same as for the whole
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sample, i.e. the unit sphere is under the hydrostatic pressure p0. In
this way, the calculation of the mean molar Gibbs free energy G is
approximately reduced to a spherical symmetric problem. The
diameter of the unit sphere, 2R, can be interpreted as the spatial
period (or wave length) of the composition modulation which is
described by the function c(r) where r is the amount of the radius
vector r. The spherical composition distribution function c(r) must
fulfill the condition that the mean mole fraction of the component
B in the unit sphere is equal to the constant alloy composition c0:

3
R3 �

Z R

0
cðrÞ � r2 � dr ¼ c0: ð2Þ

The equilibrium value of R, and the equilibrium function c(r) are
possibly obtained by minimizing G. This is a variational problem
which is numerically solved by setting c(r) to be a Fourier sum, thus
making G approximately a function of a finite number of variables.
For this purpose, the definition of c(r), physically defined only in the
range 0 6 r 6 R, is mathematically extended to �R 6 r 6 R by the
symmetry requirement c(�r) = c(r), and to any value of r by the
periodicity requirement c(r + 2R) = c(r). Taking into account the
conditional Eq. (2), this Fourier sum can be written as

cðrÞ ¼ c0 �
6
p2 �

Xn0

n¼1

Kn �
cosðn � pÞ

n2 þ
Xn0

n¼1

Kn � cos
n � p � r

R

� �
; ð3aÞ

where the Kn(n = 1–n0) are Fourier coefficients, and n0 is a suffi-
ciently great number. In this way, G is approximated by a function
of the independent variables R and the Kn.

Differentiation of c(r) with respect to r yields:

dc
dr
¼ �p

R
�
Xn0

n¼1

Kn � n � sin n � p � r
R

� �
; ð3bÞ

d2c

dr2 ¼ �
p2

R2 �
Xn0

n¼1

Kn � n2 � cos n � p � r
R

� �
; ð3cÞ

which is needed later.

2.2. The chemical free energy

According to Cahn and Hilliard [6], the local molar chemical free
energy f is a function not only of the local composition c but also of
the composition distribution in the immediate environment. Thus,
f is a function of c as well as of the spatial derivatives of c. Straight-
forwardly, Cahn and Hilliard expanded f in a Taylor series of the
spatial derivatives of c up to second order terms. For cubic crystal
symmetry they obtained:

f ¼ f0ðcÞ þ j1 � r2c þ 1
2
� j2 � ðrcÞ2; ð4Þ

or, by applying the mathematical identity

rðj1 � rcÞ ¼ j1 � r2c þ @j1

@c
� ðrcÞ2; ð5Þ

f ¼ f0ðcÞ þ rðj1 � rcÞ þ 1
2
� j2 �

@j1

@c

� �
� ðrcÞ2; ð6Þ

where f0(c) is the molar chemical free energy of the homogeneous
material of constant composition c under vacuum, and $ means
the Nabla operator. The coefficients j1 and j2 are defined by:

j1 ¼
@f

@ @2c
@x2

k

� �
0
BB@

1
CCA

0

; ð7aÞ

j2 ¼
@2f

@ @c
@xk

� �2

0
B@

1
CA

0

; ð7bÞ

which in general are dependent on c. The index ‘‘0’’ means that the
differentiations are to be carried out in the homogeneous state of
the material. The coordinates xk(k = 1,2,3) denote a right-handed
Cartesian coordinate system with axes parallel to the crystallo-
graphic h1,0,0i-directions.

The mean molar chemical free energy is given by

Fchem ¼
1

V sample
�
ZZZ

sample
f � dx1 dx2 dx3; ð8Þ

where the integration is taken over the volume Vsample of the sample
in the un-relaxed state. Substituting the expression on the right-
hand side of Eq. (6) for f in Eq. (8) yields:

Fchem ¼
1

V sample
�
ZZZ

sample
f0ðcÞ þ

1
2
� j2 �

@j1

@c

� �
� ðrcÞ2

� �

� dx1 dx2 dx3 þ
1

V sample
�
ZZZ

sample
rðj1 � rcÞ

� d x1 d x2 d x3: ð9Þ

The second volume integral on the right-hand side of Eq. (9) can be
transformed to an integral of (j1 � rc) over the surface of the sam-
ple, and thus must be zero because there is no atomic diffusion
through the surface of the sample ð$c ¼ 0Þ.

The final result for cubic crystal symmetry is then given by

Fchem ¼
1

V sample
�
ZZZ

sample
f0ðcÞ þ j � ðrcÞ2
h i

� dx1 dx2 dx3; ð10Þ

where

j ¼ 1
2
� j2 �

@j1

@c
ð11Þ

is still a function of c, but is set to be approximately constant for
applications.

For a spherical symmetric composition distribution in an isotro-
pic material, a local right-handed Cartesian coordinate system X1,
X2, X3 is used, with the X3-axis in the radial direction, and the X1-
and X2- axes tangent to the sphere r = const.. In this coordinate sys-
tem, the spherical symmetry center is given by O(0,0,�r). The mole
fraction c at a position P(x1,x2,x3) is only dependent on its distance
to the spherical symmetry center O, and thus is defined by the
function

c ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2 þ ðx3 þ rÞ2

q� �
: ð12aÞ

The first and second partial derivatives of c with respect to x1, x2, x3

at the position (0,0,0) are obtained from Eq. (12a) by using the
chain rule of differentiation:

@c
@x1
¼ 0;

@c
@x2
¼ 0;

@c
@x3
¼ dc

dr
; ð12bÞ

@2c
@x2

1

¼ 1
r
� dc

dr
;

@2c
@x2

2

¼ 1
r
� dc

dr
;

@2c
@x2

3

¼ d2c

dr2 ; ð12cÞ

@2c
@x1@x2

¼ 0;
@2c

@x2@x3
¼ 0;

@2c
@x1@x3

¼ 0: ð12dÞ

Substituting the first partial derivatives from Eqs. (12b) for the gra-
dient of c in Eq. (10), and replacing the volume element dxdydz by
4pr2dr, and the volume of the sample by 4pR3/3, finally yields

Fchem ¼
3
R3 �

Z R

0
f0ðcÞ þ j � dc

dr

� �2
" #

� r2 � dr; ð13Þ

since the unit sphere is supposed to represent the whole sample.
The function f0(c) is required to display the situation of spinodal

decomposition exhibiting a miscibility gap: Two minima and one
maximum in between define the A-rich phase and the B-rich phase
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