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a b s t r a c t

The main component of rubber friction is known to be of hysteretic nature, i.e. it is due to viscoelastic
energy dissipation taking place in the bulk of the material as a result of the pulsating forces induced
by the surface asperities whenever rubber slides on a rough substrate, such as in the case of a car tire
on a road surface. This implies that the observed macroscopic friction depends upon the constitutive
behavior of the rubber and the characteristics of the rough surface profile. In contrast to analytical mod-
els, numerical approaches can fully account for geometric and material non-linearities arising in the rub-
ber behavior, especially at small scales. However, explicit numerical modeling of rough surface features
spanning a wide range of significant length scales would result prohibitively expensive, which motivates
the need for a computational multiscale framework. As shown by previous related research, fractal sur-
face profiles can be decomposed into a finite number of sinusoidal terms, so that a central ingredient of a
multiscale approach becomes the homogenization of rubber friction on a sinusoidal surface. This work
proposes a computational homogenization procedure where a macroscale coefficient of friction for rub-
ber is derived from the solution of a microscale boundary-value problem. The latter considers contact of a
representative volume element (RVE) with a sinusoidal rigid surface, which is assumed to represent the
smallest length scale of a fractal rough surface. The numerical model is developed within the isogeomet-
ric framework and features a mortar formulation for the unilateral contact problem in the discretized set-
ting. Numerical aspects related to the choice of the RVE, the setup of the test parameters and the
convergence rate of different discretizations are discussed. Physically relevant observations concern
the role of the macroscopic applied pressure and sliding velocity on the homogenized friction coefficient.
Some comparisons with analytical results as well as dimensional analysis considerations are further
reported.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The frictional contact behavior of elastomers to rough surfaces
has a deep impact on several technological applications spanning
various fields of engineering, including car tires, seals, wiper
blades, conveyor belts, and seismic isolators. For typical combina-
tions of material properties and loading conditions, the rubber
components undergo large deformations whereas the contacting
surfaces remain nearly undeformed, so that the assumption of rub-
ber contact to a rigid surface is in most cases acceptable and will be
maintained throughout this work.

As opposed to many other material combinations, where fric-
tion stems primarily from the interaction of the contacting sur-
faces, rubber friction is mostly generated by energy dissipation
inside the material. This conclusion, first reached by Grosch [10]
through his pioneering experiments, has been confirmed by
numerous investigations and is by now commonly accepted, see

e.g. Klüppel and Heinrich [16], Persson [26] and references therein.
When rubber slides on a rough substrate, such as in the case of a
car tire on a road surface, viscoelastic energy dissipation takes
place in the material bulk as a result of the pulsating forces in-
duced by the surface asperities. This implies that the observed
macroscopic friction is heavily affected by both the properties of
the rubber and the characteristics of the rough contacting surface.
A key objective of research is thus to establish a quantitative cor-
relation between the rubber constitutive behavior, the parameters
describing the surface roughness, and the resulting macroscopic
frictional response. Despite the recent significant progress in this
direction, prediction of elastomeric friction in the engineering
practice is still a major task and often requires costly large-scale
tests as the only reliable option [16].

For the sake of completeness it should be mentioned that the
viscoelastic dissipation in the bulk (often referred to in the litera-
ture as hysteretic component of friction, see e.g. [24]) is only one
of the two commonly accepted contributions to rubber friction,
the other one being due to the adhesional forces of the interfacial
layers. However the latter is only important for dry, clean and
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relatively smooth surfaces, and will therefore be neglected in the
present work. Most recently, the existence of a third component
due to geometric effects has also been suggested [8].

Extensive experiments have demonstrated that the macro-
scopic friction coefficient of elastomers depends heavily on various
parameters like normal pressure, sliding velocity and surface
roughness, see e.g. Le Gal et al. [18], Le Gal and Klüppel [19], Lorenz
et al. [21] for recent results. Other important factors such as tem-
perature and lubrication will not be considered in this work, as
here dry friction with no thermal effects is addressed. Due to these
complex dependencies, the frictional behavior of rubber must be
described with appropriate models featuring non-Amontons and
non-Coulomb effects. This was done e.g. by Hofstetter et al. [13]
within a finite element investigation of tire–road contact. More-
over, many rough surfaces (including typical road surfaces) are
known to display self-affine fractal characteristics within a well-
defined range of length scales [16,27]. Thus, prediction of the mac-
roscopic rubber friction coefficient on these surfaces, including its
observed dependency on pressure and velocity, requires appropri-
ate account for the surface roughness over the whole range of sig-
nificant length scales.

Analytical theories for the mechanics of rubber contact to self-
affine fractal surfaces have been proposed by several authors, most
notably by Klüppel and Heinrich [16] and Persson [26]. In the mod-
el by Klüppel and Heinrich [16], the hysteretic component of the
macroscopic coefficient of friction is obtained by considering a uni-
axial viscoelastic element sliding over a rough surface and comput-
ing the resulting energy dissipation. The roughness profile is
described through its spectral power density, which takes the form
of a power law for a self-affine track but may also describe other
types of surfaces. The uniaxial element may feature any of the
commonly adopted small-deformation viscoelastic models, such
as Kelvin–Voigt, Maxwell, or Zener, through the corresponding
expressions of the storage and loss moduli of the rubber. As the
uniaxial deformation of the viscoelastic element is completely
determined by the surface profile, the model implicitly assumes
that the surface cavities are completely filled by the rubber, which
only holds for sufficiently large normal pressures. This restriction is
released by introducing the mean penetration depth of the rubber
into the surface, hzPi, which is computed through an extension to
self-affine surfaces of the classical contact theory by Greenwood
and Williamson [9]. In later publications (e.g. [19]), the authors
slightly modified the model by substituting hzPi with the thickness
of the excited layer, hdi � hzPi, thus using hdi/hzPi as a calibration
parameter. The simple model presented by Wriggers and Reinelt
[40], based on a static rather than energetic approach, delivers an
identical result to that by Klüppel and Heinrich [16] for the special
case of a sinusoidal surface.

The model by Persson [26] differs from the theory by Klüppel
and Heinrich [16] mainly in two respects: it is fully three-dimen-
sional, and it takes into account to what extent the rubber follows
the profile of the rigid substrate at each length scale. This is done
via the function P(f) = A(L/f)/A(L), defined as the ratio between
the contact area at the length scale L/f (f P 1), and the macroscopic
contact area A(L) = A0. L is taken as the diameter of the macroscopic
contact area, i.e. A0 � L2. This approach is more accurate than the
introduction of hzPi or hdi, which serves the same purpose but in
an average way. Also this model is based on a small deformation
framework, accounts for the characteristics of the surface rough-
ness through its spectral power density, and can incorporate any
small-deformation viscoelastic model by accordingly defining the
storage and loss moduli of the rubber material.

The analytical models briefly described above, while effectively
reproducing the influence of various parameters on the observed
frictional response, present clear limitations when a quantitative
prediction is sought, mainly due to the assumption of small

deformations which is obviously contradicted by the physical
behavior. Within a numerical finite element setting, constitutive
models suitable for large deformation regimes can be readily incor-
porated. On the other hand, an explicit numerical modeling of the
rough surface features would result prohibitively expensive due to
the wide range of significant length scales. Therefore, the need
arises for a computational multiscale framework.

Recent years have seen an increasing adoption of computational
contact homogenization techniques, whereby macroscopic contact
laws are derived from numerical analyses at the microscale which
explicitly describe the topography and the constitutive properties
of the contacting surfaces [31]. Tworzydlo et al. [38] developed
new asperity-based constitutive models of interfaces undergoing
normal and frictional contact, through a combination of finite ele-
ment analysis of the surface asperities and statistical homogeniza-
tion techniques. Haraldsson and Wriggers [11] applied
computational homogenization to obtain frictional contact laws
suitable for the interface between soil and concrete. Upon discret-
isation of the microstructure in the contact area, the plastic defor-
mations of the asperities were simulated numerically using a
frictionless contact formulation on the microscale. Orlik et al.
[25] used a two-scale computational homogenization technique
to derive the effective contact response of a coated cementless
hip implant in a human femur based on the microstructural fea-
tures of the interface layer. Bandeira et al. [3] derived contact inter-
face laws via computational homogenization using a finite element
approach for large deformations. Temizer and Wriggers [34] devel-
oped a contact homogenization technique to compute the macro-
scopic coefficient of friction of granular interfaces, i.e. interfaces
between an elastic solid and a rigid surface with rigid particles
embedded as third bodies. The analysis was extended to granular
interfaces with viscoelastic solids by Temizer and Wriggers [35].
Finally, Wriggers and Reinelt [40] formulated a multiscale ap-
proach with the objective to derive the macroscopic friction coeffi-
cient of rubber on fractal surfaces. The basic idea was the
approximation of a fractal surface through the superposition of a
discrete set of harmonic functions associated to different length
scales. At the smallest length scale friction is neglected. A compu-
tation on each scale, where a finite deformation viscoelastic model
describes the rubber material, leads through homogenization to a
friction law which is locally applied to the next larger scale, where
the micro-roughness is defined by the next harmonic function. The
procedure is recursively applied until the largest significant scale is
reached, leading to the computation of the macroscopic friction
law.

In this work, computational contact homogenization is con-
ducted to derive a macroscopic effective coefficient of friction for
rubber as a function of sliding velocity and applied pressure. As
the multiscale procedure in Wriggers and Reinelt [40] is based
on the recursive application of a computational frictional contact
model, the final results are quite sensitive to the accuracy of the
underlining contact description. A first aim of this research is thus
the improvement of the numerical contact model in Wriggers and
Reinelt [40]. The finite element solution is now obtained in the
framework of isogeometric analysis using non-uniform rational
B-splines (NURBS), which improves both the bulk and the surface
descriptions. Moreover, the node-to-surface algorithm adopted in
Wriggers and Reinelt [40] is substituted with a more accurate
and robust mortar contact formulation. For a general background
on mortar methods, see e.g. Hild [12], Puso and Laursen [28] and
Fischer and Wriggers [7]. A second aim of this work is to present
a more detailed discussion of the contact homogenization proce-
dure, thereby analyzing the choice of the test parameters with
the aid of appropriate analytical considerations, the representativ-
ity of the micromechanical test sample in terms of size and discret-
ization, and the effects of the boundary conditions on the obtained
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