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a b s t r a c t

Free vibration analysis of micro-scaled annular sector and sector shaped graphene located on an elastic
matrix are studied via nonlocal elasticity theory. An eight-node curvilinear element is used for transfor-
mation of the governing equation of motion of annular sector graphene from physical region to compu-
tational region in conjunctions with the thin plate theory. Elastic matrix is modeled via two-parameters
which are Winkler–Pasternak elastic foundations. The discrete singular convolution (DSC) method is
employed for numerical solution of resulting nonlocal governing differential equations and related
boundary conditions. Then, the effects of nonlocal parameter, mode numbers, sector angles and founda-
tion parameters on the frequency response of micron-scaled annular sector and sector graphene are
discussed.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Micro or nano sized mechanical systems are generally modeled
as continuous elements such as beams, plates and shells. These
components are widely used in biomedical and micro electrome-
chanical purposes and modern industries. Thin films, nano-sheet
resonators, biomedical devices, nano electro mechanical applica-
tions, micro props, paddle-like resonators, atomic force micros-
copy, mechanical actuators and nano sensors are examples of
these applications. Graphene based structures have been also
widely used in micro-electro mechanical systems (MEMS) for high
frequency and high sensitive purposes for example molecular gas
detectors, solar cells, integrated circuits and nano ribbons due to
their ultra mechanical, thermal, optical and electrical properties
[1–6]. Mechanical properties of the graphene sheets are widely
investigated by researchers [7–12] in the past ten years.

It is known that the analysis based on the classical elasticity
theory does not take into consider the internal length scale effect
of nanostructure. In order to introduce the size effect to the gov-
erning equations, material length scale parameters must be taken
into account. By this time, a few different approaches such as
atomistic modeling, atomistic-continuum coupled methods and
continuum modeling have been used for modeling and analysis

of these nano-scaled systems. Atomistic simulation model or
hybrid atomistic-continuum model are computationally expensive.
So, some higher-order continuum theories have been proposed by
this time. In the early of 1970s, nonlocal elasticity theory is pro-
posed by Eringen [13] for modeling of the length-scale problems
in continuum mechanics. This theory is widely used by researchers
for modeling of nano scaled structures [14–22]. Zhang et al. [23,24]
investigated the vibration of carbon nanotubes via nonlocal elastic-
ity. Radial buckling pressure of a simply supported multi-walled
carbon nanotube is presented by Xie et al. [25]. Free vibration of
orthotropic arbitrary straight-sided quadrilateral nanoplates is
analyzed via nonlocal elasticity theory [26,27]. Aksencer and
Aydogdu [28] and Aydogdu [29] applied the nonlocal elasticity to
the vibration of nano-scaled plates. Numerical and analytical
methods are generally used for solution of nonlocal plate problem
[30–37]. Vibration and bending analyses of Micro-scaled beams
and carbon nanotubes are also modeled by nonlocal elasticity
[38–44]. Vibration, buckling and bending analyses of protein
microtubules and carbon nanotubes are detailed investigated by
present authors [45–50] using higher-order elasticity theory. Micro
or nano-scaled plates are generally used in MEMS purposes devices
in many applications such as ultra thin films, nano sheet resona-
tors, graphene sheets. There have been a number of studies in
recent past ten years dealing with the mechanical properties of
nano-scaled beams and plates via nonlocal continuum mechanics
under different mechanical and thermo elastic conditions. In the
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literature; rectangular and circular nano or micro plates have been
investigated via nonlocal elasticity. The effects of elastic matrix on
frequency had been investigated just for rectangular and circular
micro plates or graphene in the past. In the present study, however,
free vibration analysis of micro-scaled annular sector and sector
graphene resting on an elastic matrix is firstly investigated using
the geometric transformation based on the nonlocal continuum
theory in conjunction with the discrete singular convolution
method.

This paper is organized as follows. Section 2 is devoted to a brief
description of the DSC method. Section 3 gives some formulations
for the geometric mapping from the physical domain to computa-
tional domain. Nonlocal elasticity theory is presented in Section 4.
Section 5 presents the application of the numerical schemes to the
solution of nonlocal equation of micro-scaled annular sector
graphene on elastic matrix. Some numerical examples are pre-
sented in Section 6. Conclusions are presented in Section 7.

2. Discrete singular convolution (DSC)

Finite difference and finite element methods had been widely
used in engineering problems over fifty years. Singular convolu-
tions are the special branch of mathematical transformation area.
The generally transforms are known as Radon, Abel and Hilbert.
The method of discrete singular convolution has recently been pro-
posed for engineering and mathematical physics problems by Wei
[51] in 1999 via theory of distributions. After this, Wei [52] first
introduced this method for solving mechanical problems. By this
time, a variety of structural mechanics problems have been ana-
lyzed using the method of DSC [42–58] in successfully. In the pres-
ent paper, details of the DSC method are not given; interested
readers may refer to the works of [59–64]. Consider a distribution,
T and g(t) as an element of the space of test function. A singular
convolution can be defined by [51]

FðtÞ ¼ ðT � gÞðtÞ ¼
Z 1

�1
Tðt � xÞgðxÞdx ð1Þ

where T(t � x) is a singular kernel. For example, singular kernels of
delta type [52]

TðxÞ ¼ dðnÞðxÞ; ðn ¼ 0;1;2; . . . ; Þ ð2Þ

Kernel T(x) = d(x) is important for interpolation of surfaces and
curves, and T(x) = d(n)(x) for n > 1 are essential for numerically solv-
ing differential equations. With a sufficiently smooth approxima-
tion, it is more effective to consider a discrete singular convolution
[53]

FaðtÞ ¼
X

k

Taðt � xkÞf ðxkÞ ð3Þ

where Fa (t) is an approximation to F(t) and {xk} is an appropriate
set of discrete points on which the DSC is well defined [32–35].
Note that, the original test function g(x) has been replaced by f(x).
This new discrete expression is suitable for computer realization.
The mathematical property or requirement of f(x) is determined
by the approximate kernel Ta. Recently, the use of some new kernels
and regularizer such as delta regularized was proposed to solve ap-
plied mechanics problem. The researchers are generally used the
regularized delta Shannon kernel [30–39]. The Shannon’s kernel is
regularized as [54]

dD;rðx� xkÞ ¼
sin½ðp=DÞðx� xkÞ�
ðp=DÞðx� xkÞ

exp �ðx� xkÞ2

2r2

" #
; r > 0 ð4Þ

where D is the grid spacing. It is also known that the truncation
error is very small due to the use of the Gaussian regularizer, the
above formulation given by Eq. (4) is practical, and has an essen-

tially compact support for numerical interpolation. Equation (4)
can also be used to provide discrete approximations to the singular
convolution kernels of the delta type [54]

f ðnÞðxÞ �
XM

k¼�M

dDðx� xkÞf ðxkÞ ð5Þ

where dD(x � xk) = Dda(x � xk) and superscript (n) denotes the nth-
order derivative. The 2M + 1 is the computational bandwidth which
is centered around x, and is usually smaller than the whole compu-
tational domain. In the DSC method, the function f (x) and its deriv-
atives with respect to the x coordinate at a grid point xi are
approximated by a linear sum of discrete values f (xk) in a narrow
bandwidth [x � xM, x + xM]. This can be expressed as [55]

dnf ðxÞ
dxn

����
x¼xi

¼ f ðnÞðxÞ �
XM

k¼�M

dðnÞD;rðxi � xkÞf ðxkÞ; ðn

¼ 0;1;2; . . . ; Þ ð6Þ
where superscript n denotes the nth-order derivative with respect
to x. The xk is a set of discrete sampling points centered around
the point x, r is a regularization parameter, D is the grid spacing,
and 2M + 1 is the computational bandwidth which is usually smal-
ler than the size of the computational domain [53–56]. For example,
the second order derivative at x = xi of the DSC kernels for directly
given [52]

dð2ÞD;rðx� xjÞ ¼
d2

dx2 ½dD;rðx� xjÞ�jx¼xi
ð7Þ

The discretized forms of Eq. (7) can then be expressed as

f ð2ÞðxÞ ¼ d2f

dx2

�����
x¼xi

�
XM

k¼�M

dð2ÞD;rðkDxNÞfiþk;j ð8Þ

3. Geometric mapping

By using the transformation rule, a nonrectangular physical do-
main can be easily transformed into a normalized computational
domain via geometric mapping. This technique has been widely
used in the finite elements and differential quadrature methods
by this time. In order to transform from physical domain to compu-
tational domain, let consider an eight-node curvilinear quadrilat-
eral domain as shown in Fig. 1a. Thus, the following equations
are used for the coordinate transformation [65]

x ¼
X8

i¼1

Wiðn;gÞxi ð9Þ

y ¼
X8

i¼1

Wiðn;gÞyi ð10Þ

Hence, first-order, and second order derivatives of a function are gi-
ven via chain rule

ux

uy

� �
¼ ½J11�

�1 un

ug

� �
ð11Þ

uxx

uyy

2uxy

8><
>:

9>=
>; ¼ ½J22�

�1

unn

ugg

ung

8><
>:

9>=
>;� ½J22�

�1½J21�½J11�
�1 un

ug

� �
ð12Þ

where ni and gi are the coordinates of Node i in the n–g plane, and Jij

are the elements of the Jacobian matrix. These are expressed as fol-
lows [65,66];

½J11� ¼
xn yn

xg yg

" #
ð13Þ
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