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a b s t r a c t

Several non-Schmid effects of plasticity in Si are discussed in this article. The contribution of shear strain
applied in the direction of the Burgers vector and normal to it in the glide plane, and of strain applied
normal to the glide plane to defining the Peierls stress are analyzed. The analysis is performed using a
combination of atomistic simulations and the Peierls–Nabarro model based on generalized stacking
faults. It is shown that a shear strain acting in the direction of the Burgers vector decreases the Peierls
stress and the effect is due to the reduction of the shear modulus. Bonding across the glide plane has
the most important contribution to the Peierls stress, but the elastic non-linearity of the surrounding
material contributes to reducing the instability threshold. A shear strain acting perpendicular to the Bur-
gers vector has no effect on the Peierls stress. A compressive strain normal to the glide plane reduces the
Peierls stress for shuffle dislocations and has a weak increasing effect on the critical stress of glide-set
dislocations.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Plastic deformation in crystalline materials takes place by the
motion of dislocations on specific slip systems. The resistance dis-
locations face during motion is due to their interaction with the
lattice and with other obstacles such as forest dislocations, solute
atoms, precipitates, grain and twin boundaries. At low tempera-
tures and in materials with strong bonding, the dominant contri-
bution comes from the Peierls stress required to move an
isolated dislocation in the perfect lattice.

Silicon has a diamond cubic lattice with strong bonding and
undergoes a brittle-to-ductile transition at approximately 873 �K
[1]. In this material, dislocations are strongly pinned by the Peierls
barriers. The magnitude of the critical stress has been studied
extensively experimentally [2,3], theoretically [4–6] and using
atomistic simulations [7,8]. The main slip system is {111} h110i.
There are two types of glide planes denoted by shuffle and glide,
with the shuffle planes having an interplanar distance of 2.35 Å,
and the glide planes being spaced 0.78 Å apart. A simple geometric
model suggests that the density of bonds crossing the shuffle plane
is smaller than that for the glide plane. It is currently accepted that
the activity in the shuffle plane dominates at low temperatures and
high resolved shear stresses, while at high temperatures motion in
the glide system controls plasticity. As confirmed by ab initio and
atomistic models, glide dislocations are dissociated in partials,
while shuffle dislocations are not. This helps identifying the nature
of slip in electron microscopy, as the simple observation of a

compact, undissociated core indicates that the respective disloca-
tion resides in the shuffle plane.

The interplanar potential is usually characterized by the c-sur-
face. The standard c-surface is computed by separating the crystal
in two parts across a glide plane and evaluating the variation of the
energy per unit area associated with the relative shift of the two
blocks in the selected plane. Hence, the c-surface has minima at
shifts equal to the lattice periodicity. Additional minima appear
for certain configurations which correspond to stacking faults. In
Si, no minimum is observed in the shuffle plane, while the glide
plane c-surface has a minimum at a relative shift of 1/6 h112i,
which corresponds to the Burgers vector of a partial dislocation.
The minimum energy paths on the c-surface linking these minima
indicate the preferred glide mode of the crystal and define the
structure and evolution of the core of dislocations moving over
the Peierls barriers. The c-surface in Si was computed for both
planes using ab initio [9] and atomistic [10] simulations.

The Peierls stress can be computed directly from atomistic sim-
ulations, by effectively forcing a dislocation to move under an ap-
plied far-field. The Peierls stress is usually computed in situations
in which dislocations remain straight during motion, despite the
fact that in lattices with high resistance dislocations move by the
kink mechanism [11]. The critical stress is also estimated using
the Peierls–Nabarro model (PN). In this semi-analytical formula-
tion the core is represented as a continuous distribution of infini-
tesimal dislocations on the glide plane. The core structure is
described by a distribution of infinitesimal dislocation density (slip
magnitude). The solution results by requiring that the distribution
is in equilibrium under the action of the mutual repulsion of the
infinitesimal dislocations and the lattice rebound forces. An
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additional term appears when a resolved shear stress is applied.
Under the action of this perturbation, the core distorts. The Peierls
stress is evaluated as the applied stress for which no solution can
be found.

In the initial literature on the subject, the rebound force was
computed from the interplanar potential which was assumed to
be sinusoidal [12]. An analytic solution can be obtained in this case.
In later refinements, the rebound force was computed as the deriv-
ative of the c-surface [6].

Let us return now to the central problem discussed in this arti-
cle and consider an isolated, straight dislocation in an infinite crys-
tal. When the Peierls stress is evaluated in atomistic simulations, a
shear strain is applied in the direction of the Burgers vector until
instability is reached and the dislocation core shifts forward by
at least one inter-atomic distance. At the instability, the surround-
ing lattice is elastically distorted and hence the local bonding is dif-
ferent from that in the unloaded lattice. Nevertheless, when the
Peierls stress is evaluated using the PN model and the atomisti-
cally-determined c-surface, the interplanar potential is computed
by shifting the two blocks of atoms relative to each other as rigid
entities. Hence, this c-surface includes only the contribution from
the distortion of bonds in the glide plane. It is therefore more nat-
ural to consider a c-surface in which the two blocks are allowed to
deform elastically in response to the applied stress, with the rela-
tive shift being applied simultaneously. This generalized c-surface
(GGS) was used recently in the context of dislocation nucleation
[13].

One may question the need to use the PN model when predict-
ing the Peierls stress in situations in which atomistic simulations
are feasible. However, atomistic models provide simply a number:
the value of the critical stress. The PN model, although an approx-
imation, provides more insight into the physics that determines
the lattice resistance to dislocation motion. Specifically, one iden-
tifies the contribution of the bonds across the glide plane (when
the classical c-surface is used), that of the bond distortion else-
where in the model (when the GGS is used), and the effect of the
non-linearity of the elastic material behavior.

The present study outlines these contributions to the Peierls
stress. Three strains are considered: two shear strains acting in
the glide plane, one along and one perpendicular to the Burgers
vector, and a normal strain acting in the direction of the glide plane
normal. The model and procedures used are described in Section 2,
the results are discussed in Section 3 and conclusions are pre-
sented in closure.

2. Model and simulation procedures

Silicon is represented with the three-body Stillinger–Weber
(SW) potential which has been used extensively in atomistic sim-
ulations [14]. A large number of potentials have been developed
for Si, the most broadly used being SW, Tersoff [15,16] and EDIP
[17]. Each of these potentials has strengths and weaknesses. Godet
et al. [18] compared the three potentials against ab initio data
(density functional theory-local density approximation, DFT–
LDA) specifically with respect to their performance with respect
to large shear strains applied in the shuffle and glide {111} planes.
They conclude that the SW potential better reproduces the ab initio
results with respect to the smoothness and the amplitude of the
energy variation, and the localization of shear in the shuffle set.
The SW potential provides the best approximation of the maxi-
mum restoring force for the h110i direction in the shuffle plane
and the h112i direction in the glide plane, and for the theoretical
shear strength and the strain associated with this critical stress
in both planes. The un-relaxed unstable stacking fault energy for
traces in the Burgers vector direction is best predicted for the
h110i direction in the shuffle plane by the SW potential, and for
the h112i direction of the glide plane by the EDIP potential. The
values of the relaxed unstable stacking fault energy are best pre-
dicted by the Tersoff potential in both these crystal directions.
Based on these findings, we conclude that the SW potential is best
suited to represent the phenomena discussed in this article.

Atomistic models are used to determine the c-surface under
specific applied strain states. The three far fields considered in this
work are shown schematically in Fig. 1. Vector s defines the inter-
planar shift in the glide plane and is always taken in the direction
of the Burgers vector: s k b, jsj=jbj 2 ½0;1�. The far field strain, e,
loads the entire model, except the two atomic planes defining
the glide plane, where the relative shift is entirely defined by s. If
e = 0, one recovers the configuration customarily used to evaluate
the c-surface (Fig. 1a); this situation is denoted as Case 1. Three
other cases are considered: m ¼ e � n k s k b (Fig. 1b, Case 2), where
the strain has exclusively a shear component in the glide plane and
in the direction of the Burgers vector (n is the normal to the glide
plane), m ¼ e � n ? b (Fig. 1c, Case 3), where the strain has a shear
component in the glide plane and in the direction perpendicular
to the Burgers vector, and m ¼ e � n k n (Fig. 1d, Case 4), where the
strain has only a component perpendicular to the glide plane.
These are the three elementary distortion modes that can be ap-
plied relative to the glide plane and b.
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Fig. 1. Schematic representation of the loading conditions considered in this work.
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