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a b s t r a c t

The purpose of this work is the modeling and simulation of aluminum alloys during extru-

sion processes. In particular, attention is focused here on aluminum alloys of the 6000 series

(Al Mg Si) and 7000 series (Al Zn Mg). In the current paper, a number of aspects of the

structural simulation as well as that of extrusion as a thermomechanical process are con-

sidered. These aspects include contact and adaptive mesh refinement, heat transfer inside

the billet, heat transfer between the workpiece and the container, frictional dissipation,

mechanical energy and surface radiation. The friction is considered to model the so called

“dead material zone”. The radiation constant has been estimated so that the results are

close to the experimental results.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Extrusion as a technological process is used to produce pro-
files with constant cross sections from materials such as
aluminum, copper, stainless steel and various types of plastic.
The advantages of aluminum and its alloys include high duc-
tility (due to its fcc crystal structure), making it particularly
suitable for complex extrusion processes. Additionally, the
ideal ratio of Young’s modulus to mass density in aluminum
makes it ideal for a wide range of application in automotive
and aircraft manufacturing, as well as for lightweight con-
struction in general. The process of extrusion in combination
with heat treatment and further processing, e.g., bending,
leads to a complex microstructure development in the mate-
rial. An understanding of this development in each processing
step especially during extrusion and heat treatment allows
one to influence and control the resulting material properties.
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Simulation of hot forming processes with application of
finite element method (FEM) has been the subject of many
recent works. Large plastic deformations and high temper-
ature of the extrusion process cause developments in the
microstructure of the material. Shercliff and Lovatt (1999)
have presented various physical and statistical approaches
for modeling of microstructure evolution in hot deformation.
In physically based state variable models, the microstructure
and property evolution are modeled explicitly. In statistical
approach the process conditions are linked empirically to the
final microstructure. Furu et al. (1996) have offered a physically
based model to describe the development of microstructure
during hot forming processes which is later developed by
Sellars and Zhu (2000) by applying the concept of free energy as
the driving force of microstructure evolutions. Microstructure
developments are temperature dependent processes, there-
fore for modeling these developments it is required to consider
a coupled thermomechanical model. Several constitutive laws
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have been used by different research groups. Duan et al. (2004)
have investigated the influence of the constitutive equation
on the simulation of a hot rolling process. Duan and Sheppard
(2003) have applied the isotropic viscoplastic Norton–Hoff law
as the flow rule. Nes (1995) has used the hyperbolic sine law as
the governing constitutive equation which is a purely empiri-
cal model suggested for metal forming processes such as hot
rolling, forging and extrusion. This model is also employed
by Sheppard (2006) for prediction of structure during extru-
sion process and also by Zhang et al. (2007) for material
behavior of some new aluminum alloys in hot forming pro-
cesses. In another work Bontcheva et al. (2006) have applied
the “Shvarzbart” model for large deformations to describe the
thermomechanical behavior of the material.

In the current work, attention is focused on certain aspects
of the numerical simulation of extrusion and cooling includ-
ing (1) contact and friction conditions, (2) adaptive mesh
refinement, (3) thermomechanical behavior of material dur-
ing extrusion and (4) conductive, convective and surface
radiation cooling. The current approach is based on a con-
tinuum thermodynamic model formulation for thermoelastic,
thermoviscoplastic material behavior of metallic materials.
Rather than on the more realistic model of Sellars and Zhu
(2000), the current material model assumes for simplicity a
Johnson–Cook-like approach for the evolution of the accumu-
lated equivalent inelastic deformation as a function of the
stress, accumulated inelastic deformation and temperature.

2. Material model

Although not the principle focus of the current work, we out-
line the formulation of the material model used in this work
in this section for completeness. The same general approach
sketched below is also that used for much more detailed mate-
rial modeling in work in progress building on that of Sellars
and Zhu (2000).

The current approach is based on a large-deformation ther-
moelastic, thermoviscoplastic description of aluminum alloys
at high temperature. In this context, local inelastic deforma-
tion is represented by a deformation-like quantity FP. This
induces the part

FE = FF−1
P (1)

of the deformation gradient F interpreted as being elastic in
this context and a measure of energy storage in the material.
The free energy density depends on the temperature �, local
elastic deformation FE and internal state variables �1, . . .

 =  (�, FE, �1, . . .). (2)

This in turn determines the Kirchhoff stress

K = PFT = (∂FE )FT
E (3)

and the flow rule

ḞP = ˙̨ PNPiFP. (4)

Here, ˛P is the accumulated inelastic deformation and NPi is
the flow direction. The evolution of internal variables �1, . . .

takes an analogous form

�̇i = ˙̨ P�i (5)

depending on ˛P. In more advanced models such as Sellars
and Zhu (2000), �1, . . . represent such quantities as the subgrain
size, grain misorientation and dislocation density.

Next, attention is restricted to isotropic material behav-
ior. In addition, the simplifying assumption of constant heat
capacity is made here. Assuming then that the free energy
density can be split into a sum of elastic and inelastic parts,
one obtains

 =  E(�, ln VE) +  P(�, �1, . . .), (6)

where ln VE is the elastic left logarithmic stretch tensor follow-
ing from the polar decomposition of FE = VERE = REUE. Here,

 E(�, ln VE) = εE0(ln VE) − � �E0(ln VE) + �c0{� − �0 − � ln(�/�0)}(7)

represents the elastic part of this energy, � is the density of the
material and c0 is the specific heat capacity of the material.
The elastic part of energy consists of internal energetic

εE0(ln VE) = 	0 tr(ln VE)2/2 + 3	0˛0�0 tr(ln VE) + 
0 |dev(ln VE)|2(8)

and configurational entropic

�E0(ln VE) = 3	0˛0 I ln VE (9)

parts. Here 	0 is the bulk modulus of the material and 
0 and
˛0 represent the shear modulus and thermal expansion coef-
ficient of the material, respectively. Likewise, the inelastic free
energy density is given by

 P = εP0(�1, . . .) − � �P0(�1, . . .) (10)

as a linear function of the temperature � and internal state
variables �i, . . .. From (7), the isotropic Kirchhoff stress takes
the form

K = ∂ln VE
 E = 	0 {tr(ln VE) − 3˛0(� − �0)}I + 2
0 dev(ln VE). (11)

On the basis of assuming Fourier heat conduction

q = −k0∇�, (12)

temperature changes due to elastic and inelastic heating can
be found from

�c0 �̇ = −3 	0 ˛0 �
˙ln(det(F)) + ˇ � ˙̨ P + k0∇2�, (13)

where k0 is the material conductivity and � the effective stress
given by the von Mises stress

� =
√

3
2

|dev(K)|. (14)



Download	English	Version:

https://daneshyari.com/en/article/796189

Download	Persian	Version:

https://daneshyari.com/article/796189

Daneshyari.com

https://daneshyari.com/en/article/796189
https://daneshyari.com/article/796189
https://daneshyari.com/

