
The elasticity of the ½ a0 <111> and a0 <100> dislocation loop in a-Fe
thin foil

Wenwang Wu a, b, *, Robin Sch€aublin c

a Laboratory for Nuclear Materials, Paul Scherrer Institute, Villigen PSI, 5232, Switzerland
b Institute of Advanced Structure & Technology, Beijing Institute of Technology, Beijing, 100081, China
c Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland

a r t i c l e i n f o

Article history:
Received 22 January 2018
Received in revised form
25 July 2018
Accepted 28 July 2018
Available online 29 July 2018

Keywords:
Dislocation loop
Thin foil
Image forces
Elastic energy
Anisotropic elasticity
Irradiation
TEM
Fe

a b s t r a c t

Dislocation loops in irradiated ferritic steels have a Burgers vector of the type ½ a0 <111> or a0 <100>.
When they are located in a thin foil such as the one used in transmission electron microscopy, the
presence of the two free surfaces modify the elastic field by the action of the so-called ‘image forces’,
which can in turn influence the loops. In this work, a general analytical method was deployed to calculate
the image forces in an anisotropic bcc a-Fe thin foil containing a nanometric dislocation loop. We observe
that image forces induce an out of plane displacement that doubles the bulging of the thin foil surfaces
induced by the loop. The elastic field and energy induced by the image forces become remarkable when
the depth of the dislocation loop is comparable to its size. Moreover, there is large difference in the
response to image forces between the ½ a0 <111> and the a0 <100> loop, with a stronger one for the ½ a0
<111> loop, which relates to the anisotropy of the a-Fe.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Thin foil geometry implies the presence of two free surfaces that
impact the elastic field of the foil, which in turn can modify its
physical properties relative to the ones of the corresponding
infinite medium. This has been recognized at several occasions, for
example in the case of the mechanism of the mobility of disloca-
tions in a Cu thin film [1] or a Au thin film [2], which changes with
the film thickness. It has been recognized a while ago [3] that
irradiation at room temperature of pure a-Fe, representative of
ferritic steels, in the form of a transmission electron microscopy
(TEM) thin film leads to a majority of a0 <100> dislocation loops
while irradiated Fe in the bulk form exhibits mainly ½ a0 <111> [3].
This has been attributed to the so-called ‘image forces’ due to the
presence of the free surfaces that would attract the mobile ½ a0
<111> loops to the surfaces, where they disappear. This has been
considered in more recent experimental studies in irradiated Fe, by

discarding in TEM studies too thin areas (<50 nm) because the
proximity of the free surfaces strongly influences the radiation
induced microstructure [4], with in addition a significant effect of
the specimen crystal orientation on the defect yield [5]. Very
recently this has been rationalized by calculation in order to esti-
mate the loop loss in a thin foil due to image forces, usingmolecular
dynamics simulations and isotropic elasticity. It appears that this
loss of 5 nm ½ a0 <111> loops in a 50 nm thin Fe foil amounts to
about 30% [6]. However, anisotropy may have a strong impact there
as a-Fe has a remarkable anisotropic ratio of 2.4 at room temper-
ature, reaching 7.4 at 900 �C [7]. In terms of elastic formation en-
ergy, calculations indicate that the ½ a0<111> loops at room
temperature are more favorable than a0 <100> loops. With
increasing temperature the strong change in anisotropic ratio fa-
vors the a0<100> loops over the ½ a0 <111> ones, above about
350 �C [8]. This was observed in ferritic steels as well [9]. None-
theless, as pointed earlier, there are early TEM observations
reporting a0 <100> loops at room temperature, which is confirmed
by more recent ones [10e14]. The origin of the observed a0 <100>
loops at room temperature is therefore still unclear; they may
result from the interaction of the mobile ½ a0 <111> loops, as
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proposed earlier [15] and as confirmed more recently by molecular
dynamics calculations [16,17], or from the direct transformation of
3D agglomerates of interstitials (such as the C15 cluster [18])
resulting from the displacement cascades, as recently deduced
from experiments [11]. In addition, the aforementioned effect of the
free surfaces of TEM samples mobilizes the ½ a0<111> loops along
their Burgers vector, which in turn could then either form the
a0<100> loops by mutual interaction or disappear at the surfaces.
To clarify the issue, it is therefore critical to properly understand the
bias on the radiation induced dislocation loops induced by the use
of a thin foil for TEM observations.

In this work, the elastic field induced by a nanometric disloca-
tion loop with either a0 <100> or ½ a0 <111> Burgers vector in a
thin foil of Fe is studied, taking into account the image forces and
the anisotropic character of Fe [19]. The total elastic field, as the
displacement or the stress field and their gradient, of the thin film
containing the dislocation loop is the sum of the bulk elastic field
and the image elastic field. To calculate it, the superposition
method we have developed in Fourier space for anisotropic crystals
is employed [20]. The elastic energy of the thin film in presence of
the dislocation loop is considered and is derived here. More to the
point, comparison between the isotropic and anisotropic elasticity,
and the study of the impact of the loop type (a0 <100> or ½ a0
<111>), radius, its depth within the thin film and the anisotropy
ratio on the elastic fields and energy of the thin film are made. The
methodology developed for the purpose and the subsequent re-
sults are presented here. The effect of the free surfaces on irradia-
tion induced dislocation loops formed during TEM in-situ
irradiation experiments in comparison to bulk irradiation is
discussed.

2. Thin foil treatment method and application

By virtue of the free character of the surfaces of the thin foil, the
total traction stress components should be zero at their position.
The general methodology consists in generating separately, on the
one hand, the so-called bulk elastic field, s∞ij , due to the defect and,
on the other hand, the so-called image elastic field, simage

ij , which is
made to cancel out the bulk stress at the free surfaces (Fig. 1). Their
addition results in the so-called total elastic field, which is the
desired solution:

stotalij ¼ simage
ij þ s∞ij (1)

This can be best achieved in Fourier space, for both isotropic [21]
and anisotropic [20] materials. The calculation scheme presented in
detail in Ref. [20] of the anisotropic image elastic field of a defect in
presence of a free surface is summarized in Fig. 2. It allows deriving
the elastic fields, namely the displacement and stress fields,
induced by the defect at any positionwithin the thin foil. It consists
in the following steps:

① Write an arbitrary image displacement field at the free sur-
face in 2D Fourier space.
② Generate the arbitrary image stress field in Fourier space
using 3D anisotropic Hooke's law. This image stress field, simage

ij ,
is a 2D discrete Fourier series writtenwith unknown 2D discrete
Fourier coefficients.
③ Calculate the bulk stress s∞ij of the defect at the free surfaces
with any known elastic models.
④ Perform the 2D discrete Fourier transformation of the bulk
stress, which results in corresponding 2D discrete Fourier
coefficients.
⑤ Match the bulk stress field and image stress field in 2D
discrete Fourier space, so as to satisfy the free traction stress
condition s∞i3 þ simage

i3 ¼ 0 at the free surface.
⑥ Produce the 2D discrete Fourier coefficients for the arbitrary
image displacement field in Fourier space.
⑦ Perform inverse 2D discrete Fourier transformation, thus
producing the image elastic fields, namely the displacement,
displacement gradient, and stress fields, in real space.

For a thin foil with arbitrarily oriented crystal surfaces, the
following anisotropic image displacement field (u, v, w) in the 3D
space (x, y, z) described in a 2D Fourier space is employed [20]:
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where kx and ky are the Fourier coefficients and the third dimension
is explicit with z. In addition, one has to consider the presence of
the two free surfaces of the thin film. This is depicted in the
following by an upper index ‘þ’ and ‘-’ for respectively the upper
and lower free surface. As the geometry is symmetrical by reflec-
tion against the xey plane going through themiddle of the thin foil,
appropriate linear combinations of these traction and displacement
vectors on the top and bottom surfaces can be performed. The
equilibrium equations at the position along z of the free surfaces
can be rewritten into two independent sets of equations on ðUS;VS;

WSÞ and ðUA; VA; WAÞ, the symmetric and the asymmetric part
respectively. Then, three roots ðqS1; qS2; qS3Þ and three roots
ðqA1 ; qA2 ; qA3Þ for the symmetric and asymmetric matrix equations can
be calculated, respectively to these parts.

The symmetric image displacement solution uS can be written
as:

Fig. 1. Schematics illustrating the procedure to derive the elastic fields induced by a defect in a thin foil. (a) Infinite bulk material containing a defect in the center: the planned free
surfaces (solid lines) of the thin foil that will be cut in the bulk are bent by the presence of the defect. (b) The two infinite half spaces outside of the thin foil present an elastic field
that is equal in magnitude as the elastic field induced by the defect in the bulk material, but in opposite direction. (c) The thin foil containing the defect present an elastic field that is
equal in magnitude as the elastic field induced by the defect in the bulk. (d) the defect-containing foil with free surfaces. After releasing the stress fields in (b) and (c), there are no
applied external forces, but there will be a displacement across the surfaces of thin foil, as shown in (d).
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