

Contents lists available at ScienceDirect

Journal of Nuclear Materials

journal homepage: www.elsevier.com/locate/jnucmat

LiAl₂(OH)₆OH.2H₂O solubility product and dihydrogen radiolytic production rate under γ -irradiation

J.B. Champenois ^{a, *}, A. Mesbah ^b, A. Dannoux-Papin ^a, C. Cau Dit Coumes ^a, N. Dacheux ^b

- a CEA, DEN, DE2D, SEAD, F-30207, Bagnols-sur-Cèze Cedex, France
- ^b ICSM, CEA, CNRS, ENSCM, Univ Montpellier, 30207, Bagnols-sur-Cèze, France

ARTICLEINFO

Article history: Received 23 February 2018 Received in revised form 2 May 2018 Accepted 3 May 2018 Available online 8 May 2018

Keywords: Hydrated lithium aluminate Solubility product Dihydrogen radiolytic yield

ABSTRACT

The solubility product of hydrated lithium aluminate $LiAl_2(OH)_6OH.2H_2O$ was measured at 25 °C, giving $log(Ks) = -5.6 \pm 0.2$ for reaction $[LiAl_2(OH)_6]OH.2H_2O + OH^- = Li^+ + 2Al(OH)_4^- + 2H_2O$. Such value was approximately 20% higher than the only previously reported data, and improved markedly the thermodynamic simulation of aqueous systems comprising Li^+ , $Al(OH)_4^-$ and OH^- species. Moreover, the $LiAl_2(OH)_6OH.2H_2O$ apparent radiolytic hydrogen production yield was measured to be close to $0.08 \pm 0.02~10^{-7}~mol~J^{-1}$. These new data relative to $LiAl_2(OH)_6OH.2H_2O$ mineral will be of great interest to (i) describe the acceleration of Calcium Sulfoaluminate Cement (CSA) hydration by lithium ions containing aqueous waste and (ii) to assess the radiolytic production rate of dihydrogen by CSA cement-based nuclear waste forms submitted to gamma irradiation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Calcium Sulfoaluminate (CSA) cements are of great interest to stabilize and solidify several hazardous wastes [1–6]. For example, they have a good potential for the conditioning of borate- [7] and lithium-containing [8] low- or intermediate-level radioactive (ILW) waste streams produced by the nuclear industry [9–11]. The retarding effect of borate anions on the hydration of CSA cement is reduced as compared with Portland cement and can be counteracted by the introduction of lithium ions that independently accelerate CSA cement hydration [12]. The underlying mechanism is still not fully elucidated and many hypotheses have been postulated to explain the acceleration by Li⁺ ions [8].

When a CSA cement is mixed with a lithium-containing solution, Cau-dit-Coumes et al. [8,12] reported that the solution present in the pores is over-saturated from the beginning of hydration with respect to hydrated lithium aluminate [LiAl₂(OH)₆]⁺OH⁻.2H₂O, when using the sole solubility product value reported by Matsuo et al. [13]. As a consequence, it has been proposed that LiAl₂(O-H)₆OH.2H₂O precipitation during the course of hydration would play a role in the accelerating effect. However, despite the depletion of lithium ions from the pore solution, neither LiAl₂(OH)₆OH.2H₂O

nor any other lithium-containing crystalline phase has ever been identified by X-ray diffraction analysis with Li $^+$ concentrations lower than 50 mmoL/L in the mixing solution. It has thus been suggested that LiAl $_2(OH)_6OH.2H_2O$ precipitates in too small amounts to be detected or that a Li-containing hydroxide aluminum phase precipitates. The relevance of these hypotheses relies on the accuracy of the LiAl $_2(OH)_6OH.2H_2O$ solubility product value used for saturation index calculations, or on the existence of a Li-containing aluminum hydroxide compound different from the LiAl $_2(OH)_6OH.2H_2O$ mineral.

In the well described LiAl₂(OH)₆OH.2H₂O Layered Double Hydroxide (LDH) compound [14-17], lithium ions are located in the vacant octahedral sites within the gibbsite-like Al(OH)3 layers and contribute to the positive charge of the hydroxide layers. The layer charge is compensated by the incorporation of anions in the interlayer space, accompanied with water molecules, resulting in a general formula of [LiAl₂(OH)₆]⁺OH⁻.xH₂O. In fact, many interlayer hydroxide anions substitutions have been reported in literature [18-23]. Due to this structural versatility, these materials have been extensively used for many applications such as lithium extractor, catalysts, catalyst precursors for high surface area y-LiAlO₂ elaboration, stabilizers in polymer composites, drug delivery materials or adsorbents for wastewater treatment [24,25]. Intercalation mechanisms of lithium salts into aluminum hydroxide Al(OH)₃, starting from gibbsite or bayerite polymorph, have been deeply studied [18,19,24,26-32] and the structures of the resulting

^{*} Corresponding author.

E-mail address: jeanbaptiste.champenois@cea.fr (J.B. Champenois).

compounds have been already well-described [17]. However, very few data are available on the solubility product of these materials. To our knowledge, only Matsuo et al. [13] reported a LiAl₂(O-H)₆OH.2H₂O solubility product of $K_s = 3,7.10^{-8}$ corresponding to reaction below.

$$[LiAl_2(OH)_6]OH.2H_2O + OH^- = Li^+ + 2Al(OH)_4^- + 2H_2O$$
 (1)

Finally, in the context of intermediate-level radioactive waste immobilization in a cementitious matrix, dihydrogen production by pore water and hydrates radiolysis is of critical interest for safety issues [33,34]. The radiolytic production rate of dihydrogen has to be assessed, which is made possible by knowing apparent hydrogen radiolytic yields $G(H_2)$ of each component of the matrix. However, no data is available for $LiAl_2(OH)_6OH.2H_2O$ hydrate which may occur in some cemented waste packages.

This work first aims at confirming the solubility product value of $\text{LiAl}_2(\text{OH})_6\text{OH.2H}_2\text{O}$ provided by Matsuo et al. at 25 °C [13]. The second objective is to determine the radiolytic production rate of dihydrogen when $\text{LiAl}_2(\text{OH})_6\text{OH.2H}_2\text{O}$ is submitted to external γ -irradiation. The consequence of LiOH and water intercalation in the gibbsite structure on the dihydrogen production rate is finally briefly discussed.

2. Materials and methods

2.1. Elaboration and characterization

Gibbsite (CAS n°21645-51-2, Sigma-Aldrich) was suspended into mixed lithium and sodium hydroxide solutions using a liquid/solid weight ratio of 40. Mixed lithium and sodium hydroxide solutions were prepared by dissolving lithium hydroxide and sodium hydroxide into decarbonated and deionized water. The lithium concentration increased from 0 to 500 mmoL/L whereas the sodium concentration decreased from 500 to 0 mmoL/L (Table 1). The initial total hydroxide concentration remained constant and equal to 500 mmoL/L in all runs. These concentrations and liquid over solid ratios made it possible to reach thermodynamic equilibrium within 9 months of experiment. Solutions and suspensions were prepared and sealed in a CO₂-free atmosphere to prevent the reacting medium from carbonation. During the whole set of experiments, suspensions were stored in a thermostatically controlled room at 25 °C.

Powder X-Ray Diffraction (PXRD) analyses were carried out on suspensions to avoid any drying of the samples. Each suspension was introduced in a capillary (diameter = 1 mm) after 7, 25, 180 and 270 days of stirring at 25 °C, and then flame-sealed. X-ray

diffraction data were collected by using the X'pert pro diffractometer from Panalytical equipped with copper radiation ($\lambda=1.5418~\textrm{Å})$ and by adopting the Debye Scherrer geometry (transmission mode). PXRD patterns were collected in the angular range $2\theta=5-120^\circ$ with a total counting time of 7 h per sample. Rietveld refinement was not possible because of the presence of a stacking fault in the LiAl₂(OH)₆OH.2H₂O structure [17]. Therefore only LeBail refinement using Fullprof_Suite program was performed in order to follow the evolution of the unit cell parameters during the sorption experiments (Table 2).

Simultaneously, suspensions were filtered using cellulose membrane (0.45 μm pore size) after 7, 25, 180 and 270 days of stirring at 25 °C and liquid fractions were collected. The pH values of the supernatants were immediately measured using a high-alkalinity electrode (Mettler Toledo InLab Expert Pt1000 pH 0–14 T 0–100 °C) calibrated using two IUPAC pH buffers at pH 10.01 \pm 0.01 (25 °C) and 12.40 \pm 0.05 (25 °C). The chemical composition of solutions was determined using ICP-AES (Vista Pro Varian). The analytical errors were equal to \pm 5%. Solid fractions were rinsed 2 times by using isopropanol, dried in a controlled humidity chamber at 20 °C and 20% RH then collected prior the analysis. Solid fractions were characterized by thermogravimetric analysis using a TGA/DSC Netzsch STA 409 PC apparatus in nitrogen atmosphere with a heating rate of 10 °C/min up to 1000 °C.

2.2. γ-irradiation and gas analysis

Dried solid fractions collected after 270 days of experiment were γ -irradiated by using a⁶⁰Co source experimental irradiator available

Table 2Unit cell volume obtained by Le Bail calculations and apparent hydrogen radiolytic yield of the mineral fraction suspended during 270 days at 25 °C as a function of the initial lithium concentration (Li-Al-OH stands for LiAl₂(OH)₆OH.2H₂O).

t _{initial}		Unit cell Vo	lume (ų)	$\text{G(H2)}~(~\times~10^{-7}~\text{moL/J})$			
[LiOH]	[NaOH]	Gibbsite	Li-AI-OH	Dose = 2.5 MGy	Dose = 5.0 MGy		
0	500	_	_	0.001	0.001		
25	475	426.92 (1)	338.62 (4)	0.001	0.001		
50	450	427.06(1)	338.62 (3)	0.002	0.066		
75	425	427.25 (2)	339.67 (3)	0.065	_		
100	400	427.58 (2)	_	0.074	0.016		
125	375	_	339.90(1)	0.081	0.036		
150	350	_	_	_	0.06		
200	300	_	339.45 (1)	0.1	0.049		
250	250	_	339.68 (1)	0.104	0.073		
400	125	_	339.66 (1)	0.113	0.087		
500	0	-	339.70 (1)	0.096	0.076		

Table 1

Measured aqueous fraction compositions and corresponding calculated activity product (equation (9)) as a function of initial lithium ions concentration after 180 and 270 days of stirring at 25 °C — Concentrations are indicated between brackets and are expressed in mmol/L, Ionic strength I in mmol/L, normalized electrical imbalance N.E.I. in % and pH and log(K_s) are unit less.

t _{initial}		t = 180 days					t = 270 days						
[LiOH]	[NaOH]	[Li ⁺] _{aq}	[AI(OH) ₄] _{aq}	pH(±0.1)	l(mol/L)	log(k _s)	N.>E.l.(%)	[Li ⁺] _{aq}	[AI(OH) ₄] _{aq}	pH(±0.1)	L	log(k _s)	N.>E.l.(%)
0	500	<ld< td=""><td>36</td><td>13.4</td><td>400</td><td></td><td>15</td><td><ld< td=""><td>36</td><td>13.5</td><td>412</td><td></td><td>6</td></ld<></td></ld<>	36	13.4	400		15	<ld< td=""><td>36</td><td>13.5</td><td>412</td><td></td><td>6</td></ld<>	36	13.5	412		6
25	475	<ld< td=""><td>33</td><td>13.5</td><td>395</td><td>_</td><td>7</td><td><ld< td=""><td>34</td><td>13.6</td><td>432</td><td>_</td><td>0</td></ld<></td></ld<>	33	13.5	395	_	7	<ld< td=""><td>34</td><td>13.6</td><td>432</td><td>_</td><td>0</td></ld<>	34	13.6	432	_	0
50	450	<ld< td=""><td>33</td><td>13.4</td><td>376</td><td>_</td><td>6</td><td>2.1</td><td>33</td><td>13.5</td><td>397</td><td>-5.7</td><td>-3</td></ld<>	33	13.4	376	_	6	2.1	33	13.5	397	-5.7	-3
75	425	2.0	30	13.4	357	-5.7	8	2.5	31	1355	387	-5.6	-11
100	400	3.0	28	13.4	338	-5.5	7	2.4	30	13.4	342	-5.6	7
125	375	5.6	25	13.4	323	-5.3	6	2.3	27	13.4	334	-5.7	-4
150	350	5.5	21	13.4	303	-5.4	5	1.9	17	13.4	307	-6.1	-1
200	300	35	8.2	13.3	274	-5.4	12	41	7.7	13.3	263	-5.3	30
250	250	90	5.2	13.2	250	-5.2	39	90	4.9	13.1	231	-5.2	69
400	125	235	3.7	13.0	233	-4.9	77	236	3.4	12.8	213	-4.7	120
500	0	386	2.9	12.8	228	-4.7	113	333	2.9	12.4	182	-4.4	153

Download English Version:

https://daneshyari.com/en/article/7963053

Download Persian Version:

https://daneshyari.com/article/7963053

Daneshyari.com