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h i g h l i g h t s g r a p h i c a l a b s t r a c t

� A continuum theory of surfaces is
used to analyse a set of molecular
dynamics results obtained on heli-
um/steel systems.

� The G factor from the Laplace-Young
equation applied to the helium/steel
systems was calculated using two
methods.

� G, which is a surface stress like
quantity, exhibits a non-linear de-
pendency on the helium/steel inter-
face strain.
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a b s t r a c t

A continuum theory of surfaces is successfully applied to analyse a set of molecular dynamics results
obtained on systems consisting of nanosize fluid bubbles trapped in a solid matrix. The equations of this
theory supplied with molecular dynamics data allowed calculating the G factor from the Laplace-Young
equation as applied to systems of industrial interest, such as the helium bubbles that form along the
ageing of some austenitic steel components of the nuclear reactors. The G factor was found to have a non-
linear dependency on the helium/steel interface strain. These findings are in contradiction with the
implicit assumption made in some published literature considering G as a constant.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The last years have seen an increased interest in the theoretical
study of nanosize fluid inclusions (bubbles) trapped in various solid
matrices [1e7]. In most studies, the Laplace-Young equation, as
established for the fluid/fluid systems, is also used for the fluid/
solid ones:

PB ¼ 2G
RB

þ PS (1)

Here, PB is the pressure of the fluid in the bubble, RB is the bubble
radius, PS is the pressure applied by the solid matrix on the bubble
surface and the G factor is often identified with the surface free
energy of the fluid/solid interface (for example, see Refs. [1e5]).
However, for some authors [8e10], the G factor from the Laplace-
Young equation applied to systems containing solid surfaces is a
surface stress rather than a surface free energy.

As shown in Ref. [11], the surface stress, which is an excess
quantity, can be expressed through a second rank tensor, theE-mail address: andrei.jelea@irsn.fr.
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surface excess stress tensor. In a spherical coordinate system, its
components are calculated as follows:

gij ¼
1
R20
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(2)

In equation (2), ra and rb are the a and b side limits of the a/b
interface, sij(r) are the components of the stress tensor in the
interface and sa,bij (r) are the corresponding components of the
stress tensor in the a and b bulk phases extrapolated to the
geometrical dividing surface. The geometrical surface position
r¼ R0 is chosen in an arbitrary way within the interface
(ra< R0< rb). If the system has a spherical symmetry and, in addi-
tion, the bulk phases a and b are homogeneous, the following
equations hold:

cr2½ra;R0Þ saqqðrÞ ¼ sa44ðrÞ ¼ sarrðrÞ ¼ sarrðR0Þ ¼ sarrðraÞ ¼ ct1
cr2

j
R0; rb

k
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qq
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�
rb
�
¼ ct2

cr sa;bij ðrÞ ¼ sijðrÞ ¼ 0 isj

(3)

where ct1 and ct2 are constant with respect to r.
The definition of the surface stress by equation (2) also in-

troduces a normal component, grr, suggesting a three dimension
aspect of the surface stress. As can be seen from equation (2), every
component of the surface excess stress tensor is a function of R0, the
position of the geometrical surface in the interface. For a spherical
interface, the function grr(R0) takes the following form [11]:

grrðR0Þ ¼
R0

j
sbrrðR0Þ � sarrðR0Þ

k
3

þ C
R20

where C <0 (4)

The shape of the function grr(R0) expressed by equation (4)
shows that there is always a geometrical surface position R0¼ Rs
such that grr(Rs)¼ 0. For this point, the geometrical surface is called
the surface of tension and the surface excess stress tensor becomes
bi-dimensional [11].

Starting from the general condition ofmechanical equilibrium at
a curved interface between the phases a and b, the author of
reference [11] also derived a vector form of the Laplace-Young
equation in a generalized curvilinear coordinate system. This
equation is applicable to all forms of curved interfaces irrespective
of the nature of the a and b bulk phases (solid or fluid). If a spherical
coordinate system is used and the system has a spherical symme-
try, the generalized Laplace-Young vector equation reduces to the
following scalar form:

sarrðR0Þ � sbrrðR0Þ ¼ �2G
R0

(5)

In equation (5), srra (R0) and srr
b (R0) are the radial components of

the stress tensor in the bulk phases a and b applied to the a side
(r¼ ra) and the b side (r¼ rb) faces of the interface, extrapolated to
the geometrical surface (r¼ R0). In the case where the a and b bulk
phases are homogeneous, equations (3) apply and the extrapola-
tion gives: srra (R0)¼ srr

a (ra) and srr
b (R0)¼ srr

b (rb). G is calculated using
the following relation:

G ¼ Gqq þ G44

2
(6)

where Gqq and G44 are obtained from the tangential components of
the stress tensor:
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The physical quantities ra,b, sii(r), sa,bii (r) and R0 from equation
(7) have the same meaning as in equation (2). However, the surface
stresses they define, Gii and gii, are different, with one exception
[11], when the geometrical surface is chosen to coincide with the
surface of tension (R0¼ Rs). Only for this case, when the surface
excess stress tensor becomes bi-dimensional, the G factor from the
Laplace-Young equation is equal with gm, the average of the
tangential components of the surface excess stress tensor:

GqqðRsÞ ¼ gqqðRsÞ G44ðRsÞ ¼ g44ðRsÞ

GðRsÞ ¼ GqqðRsÞ þ G44ðRsÞ
2

¼ gqqðRsÞ þ g44ðRsÞ
2

¼ gmðRsÞ
(8)

In the present work, the concepts and relations of the contin-
uum theory of surfaces (CTS) from Ref. [11] previously introduced
are used to analyse a set of molecular dynamics results obtained on
systems where the size of one of the phases is of the order of
nanometer. For the molecular dynamics study, one chose the
particular case of helium bubbles confined in a face centered cubic
(fcc) FeNiCr alloy at compositions similar to AISI-316 austenitic
steels: the a phase is the helium (He) and the b phase is the metal
(M).

This work has also an applied objective, since it provides two
methods allowing to calculate the G factor for fluid/solid interfaces
in systems of industrial interest. In particular, predicting the evo-
lution and the properties of the helium bubbles in AISI-316
austenitic steels is crucial for understanding the ageing phenom-
ena affecting some steel components of the nuclear reactors.

The paper is structured as follows: Section 2 presents the
models and methods employed in this study. The first part of Sec-
tion 3 gives a characterization of the helium/steel interface on the
basis of molecular dynamics results. In the second part of Section 3,
the concepts and equations of CTS are employed to analyse the
molecular dynamics data and to calculate the G factor from the
Laplace-Young equation. Section 4 gives a summary of the results of
this study.

2. Models and methods

2.1. Models for the helium/steel systems

The calculations presented in this paper were carried out using
3D periodic boundary conditions. The pattern for the periodical
model was built starting from a supercell of 31� 31 x 31 fcc
elementary cells. The fcc sites of this supercell were randomly filled
with Fe, Ni and Cr atoms in order to create a model reproducing the
AISI-316 alloy which has a composition (in weight %) of 12% Ni,
17.5% Cr and 70.5% Fe [12] and displays a homogeneous distribution
of the components (Fe, Ni, Cr) in thematrix [13]. The resulting cubic
supercell contains 83385 Fe atoms, 13512 Ni atoms and 22267 Cr
atoms.

This perfect fcc supercell was then relaxed through molecular
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