Journal of Nuclear Materials 505 (2018) 134-142

Contents lists available at ScienceDirect

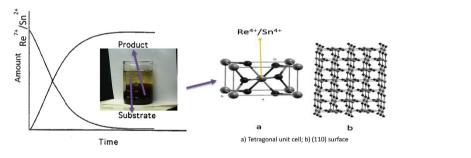
Journal of Nuclear Materials

journal homepage: www.elsevier.com/locate/jnucmat

Synthesis of rhenium-doped tin dioxide for technetium radioactive waste immobilization

Mumtaz Khan ^a, Wooyong Um ^{a, b, *}, Won-Seok Kim ^a, Jong Heo ^{a, c}, HyunJu Kim ^a, Seeun Chang ^a

^a Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-Gu, Pohang, Gyeongbuk, 790-784, Republic of Korea


^b Division of Environmental Science and Engineering (DESE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-Gu, Pohang, Gyeongbuk, 790-784, Republic of Korea

^c RIST 3277, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-Gu, Pohang, Gyeongbuk, 790-784, Republic of Korea

HIGHLIGHTS

- Re⁴⁺ was incorporated into SnO₂ particles, called Re(SnO₂).
- Re(SnO₂) showed limited reoxidation and less solubility than ReO₂.
- Re¹⁺, Re²⁺, Re⁴⁺, and Re⁷⁺ species were found on Re(SnO₂) surface.
- ⁹⁹Tc(SnO₂) can be synthesized like Re(SnO₂) for ⁹⁹Tc immobilization.

GRAPHICAL ABSTRACT

ARTICLE INFO

Article history: Received 5 December 2017 Received in revised form 9 April 2018 Accepted 9 April 2018 Available online 11 April 2018

Keywords: Technetium Rhenium Reduction Incorporation Recalcitrant

ABSTRACT

As an analog of technetium (⁹⁹Tc), rhenium (Re) was incorporated into the tin oxide (SnO₂) lattice structure to produce a stable phase. This new bi-metallic oxide consisting of Re⁴⁺ and Sn⁴⁺ was formed from perrhenate (ReO₄⁻) reduction by tin (Sn²⁺) and could reduce re-oxidation. After the precipitate was characterized by various techniques, the precipitate morphology and XRD patterns were found to resemble those of cassiterite (SnO₂) with narrow crystallite size ($D_{average} = ~1.47$ nm). The local structure of the precipitate was characterized as Re–O (~2.02 nm), Re–Sn (~3.15 nm), and Re–Sn (~3.70 nm) in the first, second, and third coordination shells, respectively. As Re⁴⁺ was doped into the cassiterite phase, the precipitate resisted re-oxidation, and the dissolved Re species were re-precipitater 23 h. A major portion of Re dissolved during the solubility and re-oxidation tests was assigned to the species of Re⁺¹ (12%), Re²⁺ (47.42%), Re⁴⁺ (28.48%), and Re⁷⁺ (12.18%) on the surface of precipitate, while Re⁺¹ (1.05%), Re²⁺ (15.35%), Re⁵⁺ (27.77%), and Re⁷⁺ (55.82%) species were found on the *α*-ReO₂ surface. These findings suggest that low-temperature reductive co-precipitation can incorporate ⁹⁹Tc (or Re) into the SnO₂ structure which limit the ⁹⁹Tc (or Re) re-oxidation and solubility.

© 2018 Elsevier B.V. All rights reserved.

^{*} Corresponding author. Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-Gu, Pohang, Gyeongbuk, 790, Republic of Korea.

E-mail addresses: mumtazkhan03@postech.ac.kr, mumtazk36@gmail.com (M. Khan), wooyongum@postech.ac.kr (W. Um), wkim23@postech.ac.kr (W.-S. Kim), jheo@ postech.ac.kr (J. Heo), hyunju1157@postech.ac.kr (H. Kim), seeun@postech.ac.kr (S. Chang).

1. Introduction

The purex process, which reprocesses spent nuclear fuel, extracts technetium (99Tc) along with uranium (U) [1]. During the final conversion stages of U–UF₆, a portion of 99 Tc is converted to the gaseous contaminant 99 TcF₆ [1] and another significant portion (which cannot be treated by any current methods) is released as liquid waste into the environment [2]. For example, significant ⁹⁹Tc radioactivity (99 Tc = ~1.85 × 10¹³ Bq) was leaked into the environment at the Hanford Site (Washington, USA) [3]. The storage sites at Oak Ridge (Tennessee, USA) have discharged 3.52–1147 Bq. g⁻¹⁹⁹Tc into neighboring sediments and subsurface water [4] and the presence of many other isotopes was also reported. The Sellafield site in the UK, which lacks a long-term immobilization methodology, has also discharged significant ⁹⁹Tc into the ocean [2,5,6]. Spent fuel reprocessing in Asian countries will increase the ⁹⁹Tc pollution due to the unavailability of an appropriate treatment procedure [7]. Therefore, there is an urgent demand of immobilization methods that effectively sequester ⁹⁹Tc radioactive waste.

Perrhenate (ReO₄⁻) is a commonly used surrogate of ⁹⁹TcO₄⁻ [8]. The two species have similar hydration energy (-2.4 eV for ⁹⁹TcO₄⁻ and -2.5 eV for ReO₄⁻) and bond length (⁹⁹Tc-O = 1.71 Å; Re-O = 1.74 Å) [8]. Furthermore, the ionic radii of ⁹⁹Tc⁴⁺ and Re⁴⁺ are 0.78 and 0.77 Å, respectively, whereas those of ⁹⁹Tc⁷⁺ and Re⁷⁺ are 0.70 and 0.67 Å, respectively [9]. Similarities between ⁹⁹Tc⁷⁺ and Re⁷⁺ oxides have been confirmed under high pH (>10) and E_h conditions (>0.5 V) [10,11]. However, ⁹⁹Tc and Re oxide species with low oxidation states under low E_h (<0.5 V) and pH (<10) conditions may form different compounds. In particular, Re forms ReO₂, ReO₃, Re₂O₃, and ReS₂, whereas ⁹⁹Tc exists as ⁹⁹Tc(OH)₂, ⁹⁹Tc₃O₄, ⁹⁹TcO₂, and ⁹⁹TcS₂ (or ⁹⁹Tc₂S₇) [10,11]. These different species are attributable to the different reduction potentials of the Tc⁷⁺/Tc⁴⁺ [12] and Re⁷⁺/Re⁴⁺ [13] couples (E = 0.510 and 0.748 V, respectively). Despite these differences and similarities (as described above), Re is the only suitable surrogate element for ⁹⁹Tc.

 $^{99}\text{Tc/Re}$ can be sequestered by chemical modification and incorporation of $^{99}\text{Tc/Re}$ into different metal—oxide lattice (MO_x) structures. Historically, ^{99}Tc has been incorporated into other minerals, for example, trevorite, ^{99}Tc spinal, sodalite, rutile, pyrochlore, perovskite, goethite, and layered double hydroxide [14]. Although ^{99}Tc has been incorporated into many iron oxides such as Fe₂O₃ and Fe₃O₄ [14–16] to reduce its mobility, ^{99}Tc incorporation mechanism into SnO₂ has not been extensively studied yet. As shown in Eqs. (1)–(7), Sn²⁺ is a stronger reducing agent than Fe²⁺ [11,12]. In Eqs. (3) and (7), $^{99}\text{TcO}_4^-$ is reduced by aqueous Fe²⁺. However, reduction by Sn²⁺ is more appropriate [16–18] because Sn²⁺ reactions are spontaneous with relatively high thermodynamic drive in the forward direction. Quantitatively, the ΔE values of Re⁷⁺/Sn²⁺ and $^{99}\text{Tc}^{7+}/\text{Sn}^{2+}$ ($\Delta E = -0.022$ V). [12,13].

$$Fe^{2+} = Fe^{3+} + e^{-}E = -0.770V$$
(1)

$${}^{99}\text{TcO}_4{}^-{}+4\text{H}^+{}+3\text{e}^-{}={}^{99}\text{TcO}_2.n\text{H}_2\text{O}+(2-n)\text{H}_2\text{OE}=0.748\text{V} \eqno(2)$$

$${}^{99}\text{TcO}_4^- + 3\text{Fe}^{2+} + (n + 7)\text{H}_2\text{O} = 99\text{TcO}_2.n\text{H}_2\text{O}_{(s)} + 3\text{Fe}(\text{OH})_{3(s)} + 5\text{H}^+ \Delta\text{E} = -0.022\text{V}$$
(3)

$$Sn^{2+} = Sn^{4+} + 2e^{-}E = -0.15V$$
(4)

$$\operatorname{ReO}_{4}^{-}+4\mathrm{H}^{+}+3\mathrm{e}^{-}=\operatorname{ReO}_{2}+2\mathrm{H}_{2}\mathrm{O}\,\mathrm{E}=0.510\mathrm{V} \tag{5}$$

$$2\text{ReO}_{4^{-}(aq)} + 2\text{Sn}^{2^{+}(aq)} + \text{H}_{2}\text{O}_{(aq)} = 2\text{ReO}_{2(s)} + 2\text{SnO}_{2(s)} + 2\text{H}^{+}_{(aq)} + 0.5\text{O}_{2}\Delta\text{E} = 0.36\text{V}$$
(6)

$$\begin{aligned} & 2TcO_4^{-}{}_{(aq)} + 2Sn^{2+}{}_{(aq)} + H_2O = 2TcO_{2(s)} + 2SnO_{2(s)} + 2H^+ \\ & + 0.5O_2 \varDelta E \\ & = 0.60V \end{aligned} \tag{7}$$

Most methods of ⁹⁹Tc/Re incorporation into MO_x require high temperature (~1200–1400 °C) [14], which is unsuitable because ⁹⁹TcO₂ sublimes around 900 °C and ⁹⁹Tc₂O₇ boils at 311 °C [15]. The incorporation of ⁹⁹Tc/Re into SnO₂ has been suggested by previous authors [14]; however, no studies have proven how Re/⁹⁹Tc is chemically incorporated into the SnO₂ lattice [14,19–21]. To fill this knowledge gap, this study investigates the immobilization/incorporation of Re into the SnO₂ lattice by reductive co-precipitation.

2. Experimental

2.1. Instrumentation

X-ray absorption spectroscopy [XAS] measurements were taken at 8C beamline of the Pohang accelerator laboratory (PAL). The PAL is running at 3.0 GeV with 32 beamlines. Measurements were made at x-ray incidence angle of 45° with respect to the sample. Ionization chambers in transmission as well as fluorescence mode were used to collect spectra. Data analysis was performed with Athena and Artemis software. Data normalization was done by Athena, and Atom was used to make model cluster. Single scattering paths fitted in this study were calculated by FEFF employed in Artemis. The model was developed supposing Re and Sn substituted each other position in the tetragonal cassiterite.

Inductively coupled plasma mass spectrometry [ICP-MS] (Nexion 300D) was used for Re/Sn analysis in aqueous solutions and solids digests. Surface analysis was performed with X-ray photoelectron spectroscopy [XPS] (Thermo Scientific K-AlphaTM with an Al (mono type) X-ray source). It has energy step up to 3.0 meV with energy range up to 1486.6 eV. XPS data analysis and peak fittings were performed with OriginPro 8 package. All peaks were fitted to Gaussian shape after background removal. Energy-dispersive X-ray spectroscopy [EDX] (OXFORD INCA energy system) was used for elemental analysis; whereas scanning electron microscope (SEM, JEOL-6480 LV) was used for surface morphology. X-ray diffraction [XRD] (RIGAKU D/MAX-2500 V) patterns were collected with step size of 0.01–0.06 and $2\theta = ~5$ -120°. The XRD peaks were fitted with pseudo voigt function of JADE 6.0.

Oxidation-Reduction potential [ORP] and dissolved oxygen [DO] were measured using multi-channel meter (Laqua Act Horiba Scientific, model D-75G, Japan). Redox potentials were corrected to standard hydrogen electrode [SHE] values by adding +194 mV to the measured values at 30 °C. Solution pH was measured by pH meter (Orion start A211, Thermo-Scientific). Total dissolved solids [TDS] and electrical conductivity [EC] for solutions were measured by multi-channel meter (HI8732, Hanna Instrument Company). All aqueous samples were centrifuged using Eppendorf centrifuge[®] Download English Version:

https://daneshyari.com/en/article/7963183

Download Persian Version:

https://daneshyari.com/article/7963183

Daneshyari.com