Accepted Manuscript

Radiation-induced grain subdivision and bubble formation in $\rm U_3Si_2$ at LWR temperature

Tiankai Yao, Bowen Gong, Lingfeng He, Jason Harp, Michael Tonks, Jie Lian

PII: S0022-3115(17)30961-3

DOI: 10.1016/j.jnucmat.2017.10.027

Reference: NUMA 50559

To appear in: Journal of Nuclear Materials

Received Date: 3 July 2017

Revised Date: 6 October 2017
Accepted Date: 10 October 2017

Please cite this article as: T. Yao, B. Gong, L. He, J. Harp, M. Tonks, J. Lian, Radiation-induced grain subdivision and bubble formation in U₃Si₂ at LWR temperature, *Journal of Nuclear Materials* (2017), doi: 10.1016/j.jnucmat.2017.10.027.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Radiation-induced Grain Subdivision and Bubble Formation in U_3Si_2 at LWR Temperature

Tiankai Yao¹, Bowen Gong¹, Lingfeng He², Jason Harp², Michael Tonks³, Jie Lian^{1*}

^{1.} Department of Mechanical, Aerospace & Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States

^{2.} Idaho National Laboratory, Idaho Falls, ID 83415, United States

^{3.} Mechanical and Nuclear Engineering Department, Pennsylvania State University,

University Park, PA 16802, United States

* Corresponding author

Abstract:

U₃Si₂, an advanced fuel form proposed for light water reactors (LWR), has excellent thermal conductivity and a higher fissile element density. However, limited understanding of the radiation performance and fission gas behavior of U₃Si₂ is available at LWR conditions. This study explores the irradiation behavior of U₃Si₂ by 300 KeV Xe⁺ ion beam bombardment combining with *in-situ* transmission electron microscopy (TEM) observation. The crystal structure of U₃Si₂ is stable against radiation-induced amorphization at 350 °C even up to a very high dose of 64 displacements per atom (dpa). Grain subdivision of U₃Si₂ occurs at a relatively low dose of 0.8 dpa and continues to above 48 dpa, leading to the formation of high-density nanoparticles. Nano-sized Xe gas bubbles prevail at a dose of 24 dpa, and Xe bubble coalescence was identified with an increase of irradiation dose. The volumetric swelling resulting from Xe gas bubble formation and coalescence was estimated with respect to radiation dose, and a 2.2% volumetric swelling was observed for U₃Si₂ irradiated at 64 dpa considering fission gas only.

Download English Version:

https://daneshyari.com/en/article/7963603

Download Persian Version:

https://daneshyari.com/article/7963603

<u>Daneshyari.com</u>