Accepted Manuscript

Thermomechanical process optimization of U-10wt% Mo – Part 2: The effect of homogenization on the mechanical properties and microstructure

Vineet V. Joshi, Eric A. Nyberg, Curt A. Lavender, Dean Paxton, Douglas E. Burkes

PII: S0022-3115(15)30091-X

DOI: 10.1016/j.jnucmat.2015.07.005

Reference: NUMA 49205

To appear in: Journal of Nuclear Materials

Received Date: 9 March 2015
Revised Date: 2 July 2015
Accepted Date: 6 July 2015

Please cite this article as: V.V. Joshi E.A. Nyberg, C.A. Lavender, D. Paxton, D.E. Burkes, Thermomechanical process optimization of U-10wt% Mo – Part 2: The effect of homogenization on the mechanical properties and microstructure, *Journal of Nuclear Materials* (2015), doi: 10.1016/j.jnucmat.2015.07.005.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Thermomechanical process optimization of U-10wt% Mo – Part 2: The

effect of homogenization on the mechanical properties and microstructure

Vineet V. Joshi^{a,*}, Eric A. Nyberg^a, Curt A. Lavender^a, Dean Paxton^a, Douglas E. Burkes^a

^aPacific Northwest National Laboratory 902 Battelle Boulevard, Richland, WA 99354

Phone: (001) 509-372-6211, Fax: (001) 509-375-4448

ABSTRACT

In the first part of this series, it was determined that the as-cast U-10Mo had a dendritic

microstructure with chemical inhomogeneity and underwent eutectoid transformation during hot

compression testing. In the present (second) part of the work, the as-cast samples were heat

treated at several temperatures and times to homogenize the Mo content. Like the previous as-

cast material, the "homogenized" materials were then tested under compression between 500 and

800°C. The as-cast samples and those treated at 800°C for 24 hours had grain sizes of 25-30 μm,

whereas those treated at 1000°C for 16 hours had grain sizes around 250 µm before testing.

Upon compression testing, it was determined that the heat treatment had effects on the

mechanical properties and the precipitation of the lamellar phase at sub-eutectoid temperatures.

KEYWORDS: U-10wt% Mo, Mechanical Properties, Microstructure, Compression Testing

Introduction

Thermomechanical processing and modeling of metals and alloys require fundamental

understanding of the initial and the intermediate or developing microstructures and their

corresponding mechanical properties. The eventual properties and performance of the end

product is normally a function of the initial microstructure and the processing route employed.

Development of uranium with 10 wt% molybdenum (U-10Mo) fuel plate for research reactors is

*Corresponding author

Email address: vineet.joshi@pnnl.gov (Vineet V. Joshi)

1

Download English Version:

https://daneshyari.com/en/article/7965590

Download Persian Version:

https://daneshyari.com/article/7965590

<u>Daneshyari.com</u>